Enrutamiento automatizado de IA con OpenRouter
Este es unEngineering, Building Blocks, AI, IT Opsflujo de automatización del dominio deautomatización que contiene 7 nodos.Utiliza principalmente nodos como Agent, ChatTrigger, LmChatOpenRouter, OutputParserStructured, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Enrutamiento dinámico de modelos de IA para optimización de consultas mediante OpenRouter
- •Clave de API de servicio de IA (como OpenAI, Anthropic, etc.)
Nodos utilizados (7)
{
"id": "uNLWQ7BSozpoehpU",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "Automated AI Routing with OpenRouter",
"tags": [],
"nodes": [
{
"id": "25903a04-24d2-41f9-bf34-5d6234e642e5",
"name": "Cuando se recibe un mensaje de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-180,
-180
],
"webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "fabffdee-3c1e-47db-a4e9-f6473a6e9257",
"name": "Modelo de Chat OpenRouter",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
0,
40
],
"parameters": {
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "pb06rfB4xmxzVe3Q",
"name": "OpenRouter"
}
},
"typeVersion": 1
},
{
"id": "c53fe672-92cb-4d88-b4f6-f413fb00ad6a",
"name": "Analizador de Salida Estructurada",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
220,
40
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
},
"typeVersion": 1.2
},
{
"id": "d60a9d61-c611-4813-bf85-e8f8faaa21b6",
"name": "Modelo de Chat OpenRouter1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
380,
40
],
"parameters": {
"model": "={{ $json.output.model }}",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "pb06rfB4xmxzVe3Q",
"name": "OpenRouter"
}
},
"typeVersion": 1
},
{
"id": "ef9ceacb-55e4-4795-aa18-976997ec3717",
"name": "Nota Adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
-180,
-420
],
"parameters": {
"width": 840,
"height": 180,
"content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (LLM) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
},
"typeVersion": 1
},
{
"id": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
"name": "Agentee de Enrutamiento",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
40,
-180
],
"parameters": {
"options": {
"systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **perplexity/sonar**\n2. **openai/gpt-4o-mini**\n3. **anthropic/claude-3.7-sonnet**\n4. **meta-llama/llama-3-70b-instruct**\n5. **google/gemini-2.5-pro-preview**\n6. **qwen/qwen-qwq-32b**\n7. **openai/codex-mini**\n8. **openai/o1-pro**\n\n## Model Strengths\n\n### 1. perplexity/sonar\n- Built-in web search capability\n- Provides citations and customizable sources\n- Ideal for retrieving live, up-to-date information from the web\n\n### 2. openai/gpt-4o-mini\n- Cost-efficient language model optimized for advanced reasoning tasks\n- Excels in science and mathematics\n- Best suited for problems requiring careful, well-thought-out responses involving multiple variables or connections\n\n### 3. anthropic/claude-3.7-sonnet\n- High proficiency in coding tasks, scoring ~94% on SWE-Bench Verified\n- Enhances data science expertise by navigating unstructured data and utilizing multiple tools for insights\n- Handles very long documents and maintains coherence over extended conversations or analyses\n- Performs well in creative writing tasks such as storytelling, dialogue generation, and summarization\n- Tends to produce responses that are more aligned with safety and ethical guidelines\n\n### 4. meta-llama/llama-3-70b-instruct\n- Strong performance in coding and reasoning tasks\n- Suitable for complex programming and technical problem-solving\n- Supports long context windows, making it ideal for extended analyses\n\n### 5. google/gemini-2.5-pro-preview\n- Advanced multimodal capabilities, handling both text and images\n- Excels in tasks requiring integration of visual and textual information\n- Ideal for complex problem-solving involving diverse data types\n\n### 6. qwen/qwen-qwq-32b\n- Specialized in reasoning and problem-solving tasks\n- Effective in handling logical puzzles and complex analytical queries\n\n### 7. openai/codex-mini\n- Optimized for code generation and completion tasks\n- Suitable for lightweight coding tasks and quick code snippets\n\n### 8. openai/o1-pro\n- Designed for complex reasoning with enhanced computational resources\n- Performs well in STEM-related tasks, including physics, chemistry, and biology\n- Capable of handling large context windows, making it suitable for in-depth analyses\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n \"prompt\": \"user query goes here\",\n \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: perplexity/sonar, openai/gpt-4o-mini, anthropic/claude-3.7-sonnet, meta-llama/llama-3-70b-instruct, google/gemini-2.5-pro-preview, qwen/qwen-qwq-32b, openai/codex-mini, openai/o1-pro).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
},
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "94c49c22-9697-4230-ba35-5159041cfdc7",
"name": "Agentee de IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
400,
-180
],
"parameters": {
"text": "={{ $json.output.prompt }}",
"options": {},
"promptType": "define"
},
"typeVersion": 1.9
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "f1562281-3e44-4f7d-a585-90c54a65e888",
"connections": {
"Agente de Enrutamiento": {
"main": [
[
{
"node": "Agente de IA",
"type": "main",
"index": 0
}
]
]
},
"fabffdee-3c1e-47db-a4e9-f6473a6e9257": {
"ai_languageModel": [
[
{
"node": "Agente de Enrutamiento",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d60a9d61-c611-4813-bf85-e8f8faaa21b6": {
"ai_languageModel": [
[
{
"node": "Agente de IA",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"c53fe672-92cb-4d88-b4f6-f413fb00ad6a": {
"ai_outputParser": [
[
{
"node": "Agente de Enrutamiento",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"25903a04-24d2-41f9-bf34-5d6234e642e5": {
"main": [
[
{
"node": "Agente de Enrutamiento",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Intermedio - Ingeniería, Bloques de construcción, Inteligencia Artificial, Operaciones de TI
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Davide
@n3witaliaFull-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza
Compartir este flujo de trabajo