Construir un asistente de Kaggle de IA local usando Qdrant RAG y Ollama
Este es unEngineering, AIflujo de automatización del dominio deautomatización que contiene 23 nodos.Utiliza principalmente nodos como Set, Merge, Switch, Markdown, ReadWriteFile, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Construir un asistente local de Kaggle para competencias de IA con Qdrant RAG y Ollama
- •Información de conexión del servidor Qdrant
Nodos utilizados (23)
Categoría
{
"meta": {
"instanceId": "13a0050774c7f2acc1474b06f046215039c01087a78215e5a78461e6efc6cb1a",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "70b42807-a6c6-4159-b278-e77311727798",
"name": "Local File Trigger",
"type": "n8n-nodes-base.localFileTrigger",
"position": [
-3060,
-40
],
"parameters": {
"path": "C:\\\\ipynb\\\\loadme",
"events": [
"add"
],
"options": {
"usePolling": true,
"followSymlinks": true,
"awaitWriteFinish": true
},
"triggerOn": "folder"
},
"typeVersion": 1
},
{
"id": "893f1157-6c00-4b8e-b726-462ab371fadf",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
-1500,
300
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "9a9bfcee-1966-415c-a59f-552e1f35aae9",
"name": "Recursive Character Text Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
-1360,
440
],
"parameters": {
"options": {},
"chunkSize": 40,
"chunkOverlap": 10
},
"typeVersion": 1
},
{
"id": "a7c971a5-39ac-4715-9e1b-a56af9713b06",
"name": "Establecertings",
"type": "n8n-nodes-base.set",
"position": [
-3040,
180
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "6b7d26f9-3a38-417e-85d0-4e9d42476465",
"name": "path",
"type": "string",
"value": "=C:\\\\ipynb\\\\loadme\\\\"
},
{
"id": "bb4471c7-d894-4739-99a6-4be247794ffa",
"name": "filename",
"type": "string",
"value": "={{ $json.path.split('\\\\').last() }}"
}
]
}
},
"typeVersion": 3.3
},
{
"id": "6384792b-de76-4e43-b26e-12c2d15c2dd2",
"name": "Fusionar",
"type": "n8n-nodes-base.merge",
"position": [
-1740,
260
],
"parameters": {},
"typeVersion": 2.1
},
{
"id": "db4de019-755e-4b91-ac70-f30825f14033",
"name": "Get FileType",
"type": "n8n-nodes-base.switch",
"position": [
-2620,
80
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "html",
"conditions": {
"options": {
"version": 1,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "75188d2f-4bea-44ea-a579-9b9a1bd1ea93",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.fileType }}",
"rightValue": "html"
}
]
},
"renameOutput": true
}
]
},
"options": {}
},
"typeVersion": 3
},
{
"id": "4c56a14c-6c56-4cc1-b7fb-a09caa3d646d",
"name": "Import File",
"type": "n8n-nodes-base.readWriteFile",
"position": [
-2840,
80
],
"parameters": {
"options": {},
"fileSelector": "={{ $json.path }}{{ $json.filename }}"
},
"typeVersion": 1
},
{
"id": "c14a711f-29ab-475f-aeff-3a070c797537",
"name": "Extract from TEXT",
"type": "n8n-nodes-base.extractFromFile",
"position": [
-2440,
80
],
"parameters": {
"options": {},
"operation": "text"
},
"typeVersion": 1
},
{
"id": "22ff782e-c612-4928-9033-111cf516d07e",
"name": "Cadena de resumen",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
-2040,
-20
],
"parameters": {
"options": {
"summarizationMethodAndPrompts": {
"values": {
"summarizationMethod": "refine"
}
}
},
"chunkSize": 4000
},
"typeVersion": 2
},
{
"id": "70fa17a5-3ec9-4a81-86bc-503581505ea1",
"name": "Nota adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3100,
-180
],
"parameters": {
"color": 7,
"width": 995,
"height": 554,
"content": "## Step 1. Watch Folder and Import New Documents\n[Read more about Local File Trigger](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.localfiletrigger)\n\nWith n8n's local file trigger, we're able to trigger the workflow when files are created in our target folder. We still have to import them however as the trigger will only give the file's path. The \"Extract From\" node is used to get at the file's contents."
},
"typeVersion": 1
},
{
"id": "a51cc8ac-e310-4825-adc6-fc57c68c09aa",
"name": "Nota adhesiva1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2060,
-200
],
"parameters": {
"color": 7,
"width": 824,
"height": 770,
"content": "## Step 2. Summarise and Vectorise Document Contents\n[Learn more about using the Qdrant VectorStore](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant)\n\nCapturing the document into our vector store is intended for a technique we'll use later known as Retrieval Augumented Generation or \"RAG\" for short. For our scenario, this allows our LLM to retrieve context more efficiently which produces better respsonses."
},
"typeVersion": 1
},
{
"id": "6d59dc6a-692a-4752-a811-8b3033898fa4",
"name": "Qdrant Almacén de vectores",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-1600,
60
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "id",
"value": "test_rag"
}
},
"credentials": {
"qdrantApi": {
"id": "wqHGuxoW5RJJYSIl",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "f75f45cd-4aed-48a2-bb09-5db20b00a029",
"name": "Markdown",
"type": "n8n-nodes-base.markdown",
"position": [
-2260,
80
],
"parameters": {
"html": "={{ $json.data }}",
"options": {}
},
"typeVersion": 1
},
{
"id": "34fdd670-f568-4351-81c7-79fde68b8192",
"name": "Incrustaciones Ollama",
"type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
"position": [
-1560,
420
],
"parameters": {
"model": "mxbai-embed-large:latest"
},
"credentials": {
"ollamaApi": {
"id": "jBqODDnXWJw9rGcS",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "4c4f71db-e496-4528-b0e5-dc5ffb27a2e8",
"name": "Ollama Resumirr",
"type": "@n8n/n8n-nodes-langchain.lmOllama",
"position": [
-1900,
140
],
"parameters": {
"model": "ALIENTELLIGENCE/contentsummarizer:latest",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "jBqODDnXWJw9rGcS",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "0a2954cc-bec6-4750-ae75-6362761e41b6",
"name": "Al recibir mensaje de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-3020,
540
],
"webhookId": "9dd3e051-58a3-4c46-bd41-58c001f009f9",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "1ebe053c-0e26-44c6-b543-756ad551b99d",
"name": "Agente IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-2840,
540
],
"parameters": {
"options": {
"systemMessage": "This is a helpful and exacting data science LLM model and master Kaggle python programmer.\n\nIf Kaggle contest requirements are given from the chat input; first deeply research the problem.\n\nAccess the tool: \"previous_entry\" when preparing your background research.\n\nThen Ask any needed questions to clarify and understand the requirements necessary to build a program to address the challenge.\n\nReview your proposed program for errors and bugs.\n\nThen present the program.\n\nIf errors are returned; then iteratively debug with the chat user."
}
},
"typeVersion": 1.7
},
{
"id": "e042ec84-3bb6-466f-9957-0509a181d61b",
"name": "Almacén de vectores Tool",
"type": "@n8n/n8n-nodes-langchain.toolVectorStore",
"position": [
-2580,
740
],
"parameters": {
"name": "previous_entry",
"description": "={{ $('When chat message received').item.json.chatInput }}"
},
"typeVersion": 1
},
{
"id": "fbae9bc0-6ea4-4a26-ad76-eb84bc5d06c2",
"name": "Window Buffer Memoria",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-2760,
780
],
"parameters": {
"contextWindowLength": 15
},
"typeVersion": 1.3
},
{
"id": "2f567628-fd1d-406b-aec7-46684bd6f5e6",
"name": "Qdrant Almacén de vectores2",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
-2680,
920
],
"parameters": {
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "test_rag",
"cachedResultName": "test_rag"
}
},
"credentials": {
"qdrantApi": {
"id": "wqHGuxoW5RJJYSIl",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "3aea837f-7676-45da-b6b1-fb2f6c5f8cd9",
"name": "Ollama Chat Model3",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
-2900,
760
],
"parameters": {
"model": "qwen3:8b",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "jBqODDnXWJw9rGcS",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "a9298132-e5b9-44a2-9928-a1adf7cf9fc4",
"name": "Incrustaciones Ollama2",
"type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
"position": [
-2660,
1080
],
"parameters": {
"model": "mxbai-embed-large:latest"
},
"credentials": {
"ollamaApi": {
"id": "jBqODDnXWJw9rGcS",
"name": "Ollama account"
}
},
"typeVersion": 1
},
{
"id": "a1c71691-8e41-4633-a1ab-4991833fb7c6",
"name": "Ollama Chat Model4",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
-2360,
900
],
"parameters": {
"model": "qwen3:8b",
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "jBqODDnXWJw9rGcS",
"name": "Ollama account"
}
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"Merge": {
"main": [
[
{
"node": "Qdrant Vector Store",
"type": "main",
"index": 0
}
]
]
},
"f75f45cd-4aed-48a2-bb09-5db20b00a029": {
"main": [
[
{
"node": "Summarization Chain",
"type": "main",
"index": 0
},
{
"node": "Merge",
"type": "main",
"index": 1
}
]
]
},
"Settings": {
"main": [
[
{
"node": "4c56a14c-6c56-4cc1-b7fb-a09caa3d646d",
"type": "main",
"index": 0
}
]
]
},
"4c56a14c-6c56-4cc1-b7fb-a09caa3d646d": {
"main": [
[
{
"node": "db4de019-755e-4b91-ac70-f30825f14033",
"type": "main",
"index": 0
}
]
]
},
"db4de019-755e-4b91-ac70-f30825f14033": {
"main": [
[
{
"node": "c14a711f-29ab-475f-aeff-3a070c797537",
"type": "main",
"index": 0
}
]
]
},
"Embeddings Ollama": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"c14a711f-29ab-475f-aeff-3a070c797537": {
"main": [
[
{
"node": "f75f45cd-4aed-48a2-bb09-5db20b00a029",
"type": "main",
"index": 0
}
]
]
},
"Ollama Summarizer": {
"ai_languageModel": [
[
{
"node": "Summarization Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Vector Store Tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Embeddings Ollama2": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store2",
"type": "ai_embedding",
"index": 0
}
]
]
},
"70b42807-a6c6-4159-b278-e77311727798": {
"main": [
[
{
"node": "Settings",
"type": "main",
"index": 0
}
]
]
},
"3aea837f-7676-45da-b6b1-fb2f6c5f8cd9": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"a1c71691-8e41-4633-a1ab-4991833fb7c6": {
"ai_languageModel": [
[
{
"node": "Vector Store Tool",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"893f1157-6c00-4b8e-b726-462ab371fadf": {
"ai_document": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"Qdrant Vector Store": {
"main": [
[]
]
},
"Summarization Chain": {
"main": [
[
{
"node": "Merge",
"type": "main",
"index": 0
}
]
]
},
"Qdrant Vector Store2": {
"ai_vectorStore": [
[
{
"node": "Vector Store Tool",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"9a9bfcee-1966-415c-a59f-552e1f35aae9": {
"ai_textSplitter": [
[
{
"node": "893f1157-6c00-4b8e-b726-462ab371fadf",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Avanzado - Ingeniería, Inteligencia Artificial
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Compartir este flujo de trabajo