Extracción y resumen de datos de Wikipedia con Bright Data y Gemini AI
Este es unOther, AIflujo de automatización del dominio deautomatización que contiene 12 nodos.Utiliza principalmente nodos como Set, HttpRequest, ManualTrigger, ChainLlm, ChainSummarization, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Extraer y resumir datos de Wikipedia con Bright Data y Gemini AI
- •Pueden requerirse credenciales de autenticación para la API de destino
- •Clave de API de Google Gemini
Nodos utilizados (12)
Categoría
{
"id": "sczRNO4u1HYc5YV7",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Extract & Summarize Wikipedia Data with Bright Data and Gemini AI",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "0f4b4939-6356-4672-ae61-8d1daf66a168",
"name": "Al hacer clic en 'Probar flujo de trabajo'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
340,
-440
],
"parameters": {},
"typeVersion": 1
},
{
"id": "167e060a-c36c-462a-826c-81ef379c824b",
"name": "Modelo de chat Google Gemini For Summarization",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1520,
-60
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a51f2634-8b59-4feb-be39-674e8f198714",
"name": "Modelo de chat Google Gemini2",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1000,
-240
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-pro-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "a1ec001f-6e97-4efb-91d9-9a037fbf472c",
"name": "Summary Disparador Webhook Notifier",
"type": "n8n-nodes-base.httpRequest",
"position": [
1860,
-280
],
"parameters": {
"url": "https://webhook.site/ce41e056-c097-48c8-a096-9b876d3abbf7",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "summary",
"value": "={{ $json.response.text }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "f4dd93b5-2a33-4ac7-a0c9-9e0956bea363",
"name": "Nota adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
340,
-820
],
"parameters": {
"width": 400,
"height": 300,
"content": "## Note\n\nThis template deals with the Wikipedia data extraction and summarization of content with the Bright Data. \n\nThe LLM Data Extractor is responsible for producing a human readable content.\n\nThe Concise Summary Generator node is responsible for generating the concise summary of the Wikipedia extracted info.\n\n**Please make sure to update the Wikipedia URL with Bright Data Zone. Also make sure to set the Webhook Notification URL.**"
},
"typeVersion": 1
},
{
"id": "9bd6f913-c526-4e54-81f8-8885a0fe974f",
"name": "Nota adhesiva1",
"type": "n8n-nodes-base.stickyNote",
"position": [
780,
-820
],
"parameters": {
"width": 500,
"height": 300,
"content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used to demonstrate the data extraction and summarization aspects.\n\nBasic LLM Chain is being used for extracting the html to text\n\nSummarization Chain is being used for summarization of the Wikipedia data.\n\n**Note - Replace Google Gemini with the Open AI or suitable LLM providers of your choice.**"
},
"typeVersion": 1
},
{
"id": "30008ce4-4de2-43c5-bb03-94db58262f86",
"name": "Wikipedia Web Request",
"type": "n8n-nodes-base.httpRequest",
"position": [
780,
-440
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "={{ $json.zone }}"
},
{
"name": "url",
"value": "={{ $json.url }}"
},
{
"name": "format",
"value": "raw"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"name": "LLM Data Extractor",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1000,
-440
],
"parameters": {
"text": "={{ $json.data }}",
"messages": {
"messageValues": [
{
"message": "You are an expert Data Formatter. Make sure to format the data in a human readable manner. Please output the human readable content without your own thoughts"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.6
},
{
"id": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"name": "Concise Summary Generator",
"type": "@n8n/n8n-nodes-langchain.chainSummarization",
"position": [
1440,
-280
],
"parameters": {
"options": {
"summarizationMethodAndPrompts": {
"values": {
"prompt": "Write a concise summary of the following:\n\n\n\"{text}\"\n"
}
}
},
"chunkingMode": "advanced"
},
"typeVersion": 2
},
{
"id": "0cc843c1-252a-4c18-9856-5c7dfc732072",
"name": "Establecer Wikipedia URL with Bright Data Zone",
"type": "n8n-nodes-base.set",
"notes": "Set the URL which you are interested to scrap the data",
"position": [
560,
-440
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1c132dd6-31e4-453b-a8cf-cad9845fe55b",
"name": "url",
"type": "string",
"value": "https://en.wikipedia.org/wiki/Cloud_computing?product=unlocker&method=api"
},
{
"id": "0fa387df-2511-4228-b6aa-237cceb3e9c7",
"name": "zone",
"type": "string",
"value": "web_unlocker1"
}
]
}
},
"notesInFlow": true,
"typeVersion": 3.4
},
{
"id": "6cb9930f-1924-4762-8150-f5cd0e063348",
"name": "Nota adhesiva2",
"type": "n8n-nodes-base.stickyNote",
"position": [
940,
-500
],
"parameters": {
"color": 4,
"width": 380,
"height": 420,
"content": "## Basic LLM Chain Data Extractor\n"
},
"typeVersion": 1
},
{
"id": "47811535-bce5-4946-aaa6-baef87db1100",
"name": "Nota adhesiva3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1400,
-340
],
"parameters": {
"color": 5,
"width": 340,
"height": 420,
"content": "## Summarization Chain\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "5b5e78fb-6e5a-4b92-838c-6c4060618e9c",
"connections": {
"28656a7d-4bd8-41c8-8471-50d19d88e7f2": {
"main": [
[
{
"node": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"type": "main",
"index": 0
}
]
]
},
"30008ce4-4de2-43c5-bb03-94db58262f86": {
"main": [
[
{
"node": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"type": "main",
"index": 0
}
]
]
},
"7045af3b-9e74-42ef-92f0-f8d3266f2890": {
"main": [
[
{
"node": "Summary Webhook Notifier",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model2": {
"ai_languageModel": [
[
{
"node": "28656a7d-4bd8-41c8-8471-50d19d88e7f2",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"0f4b4939-6356-4672-ae61-8d1daf66a168": {
"main": [
[
{
"node": "Set Wikipedia URL with Bright Data Zone",
"type": "main",
"index": 0
}
]
]
},
"Set Wikipedia URL with Bright Data Zone": {
"main": [
[
{
"node": "30008ce4-4de2-43c5-bb03-94db58262f86",
"type": "main",
"index": 0
}
]
]
},
"Google Gemini Chat Model For Summarization": {
"ai_languageModel": [
[
{
"node": "7045af3b-9e74-42ef-92f0-f8d3266f2890",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Intermedio - Otros, Inteligencia Artificial
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Ranjan Dailata
@ranjancseCompartir este flujo de trabajo