Enriquecer automáticamente alertas de SIEM en n8n usando MITRE ATT&CK, Qdrant y Zendesk

Avanzado

Este es unAI, SecOpsflujo de automatización del dominio deautomatización que contiene 26 nodos.Utiliza principalmente nodos como Zendesk, SplitOut, GoogleDrive, ManualTrigger, SplitInBatches, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Automatización de enriquecimiento de alertas SIEM con MITRE ATT&CK, Qdrant y Zendesk en n8n

Requisitos previos
  • Credenciales de API de Google Drive
  • Clave de API de OpenAI
  • Información de conexión del servidor Qdrant
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "meta": {
    "instanceId": "cb484ba7b742928a2048bf8829668bed5b5ad9787579adea888f05980292a4a7",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "86ddd018-3d6b-46b9-aa93-dedd6c6b5076",
      "name": "Cuando se recibe un mensaje de chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -880,
        360
      ],
      "webhookId": "a9668bb8-bbe8-418a-b5c9-ff7dd431244f",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "a5ba5090-8e3b-4408-82df-92d2c524039e",
      "name": "Agente de IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -680,
        360
      ],
      "parameters": {
        "options": {
          "systemMessage": "You are a cybersecurity expert trained on MITRE ATT&CK and enterprise incident response. Your job is to:\n1. Extract TTP information from SIEM data.\n2. Provide actionable remediation steps tailored to the alert.\n3. Cross-reference historical patterns and related alerts.\n4. Recommend external resources for deeper understanding.\n\nEnsure that:\n- TTPs are tagged with the tactic, technique name, and technique ID.\n- Remediation steps are specific and actionable.\n- Historical data includes related alerts and notable trends.\n- External links are relevant to the observed behavior.\n"
        }
      },
      "typeVersion": 1.7
    },
    {
      "id": "67c52944-b616-4ea6-9507-e9fb6fcdbe2b",
      "name": "OpenAI Modelo de Chat",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -740,
        580
      ],
      "parameters": {
        "model": "gpt-4o",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733",
      "name": "Dividir",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        -720,
        1220
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "data"
      },
      "typeVersion": 1
    },
    {
      "id": "46a5b8c6-3d34-4e9b-b812-23135f28c278",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -580,
        1420
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "561b0737-26d5-450d-bd9e-08e0a608d6f9",
      "name": "Cargador de Datos Predeterminado",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        -460,
        1440
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "id",
                "value": "={{ $json.id }}"
              },
              {
                "name": "name",
                "value": "={{ $json.name }}"
              },
              {
                "name": "killchain",
                "value": "={{ $json.kill_chain_phases }}"
              },
              {
                "name": "external",
                "value": "={{ $json.external_references }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.description }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "6e8a4aed-7e8c-492a-b816-6ab1a98c312a",
      "name": "Separador de Tokens1",
      "type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
      "position": [
        -460,
        1620
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "0c54049e-b5e8-448f-b864-39aeb274de3e",
      "name": "Memoria de Búfer de Ventana",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        -580,
        580
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "96b776a0-10da-4f70-99d0-ad6b6ee8fcca",
      "name": "Embeddings OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -460,
        720
      ],
      "parameters": {
        "model": "text-embedding-3-large",
        "options": {
          "dimensions": 1536
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "695fba89-8f42-47c3-9d86-73f4ea0e72df",
      "name": "Extraer de Archivo",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        -920,
        1220
      ],
      "parameters": {
        "options": {},
        "operation": "fromJson"
      },
      "typeVersion": 1
    },
    {
      "id": "0b9897b0-149b-43ce-b66c-e78552729aa5",
      "name": "Al hacer clic en 'Probar flujo de trabajo'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1360,
        1220
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "d8c29a14-0389-4748-a9de-686bf9a682c5",
      "name": "Agente de IA1",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -540,
        -440
      ],
      "parameters": {
        "text": "=Siem Alert Data:\nAlert: {{ $json.raw_subject }}\nDescription: {{ $json.description }}",
        "options": {
          "systemMessage": "You are a cybersecurity expert trained on MITRE ATT&CK and enterprise incident response. Your job is to:\n1. Extract TTP information from SIEM data.\n2. Provide actionable remediation steps tailored to the alert.\n3. Cross-reference historical patterns and related alerts.\n4. Recommend external resources for deeper understanding.\n\nEnsure that:\n- TTPs are tagged with the tactic, technique name, and technique ID.\n- Remediation steps are specific and actionable.\n- Historical data includes related alerts and notable trends.\n- External links are relevant to the observed behavior.\n\nPlease output your response in html format, but do not include ```html at the beginning \n"
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.7
    },
    {
      "id": "55d0b00a-5046-45fa-87cb-cb0257caae87",
      "name": "OpenAI Modelo de Chat1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -600,
        -220
      ],
      "parameters": {
        "model": "gpt-4o",
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "9b53566b-e021-403d-9d78-28504c5c1dfa",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -320,
        -40
      ],
      "parameters": {
        "model": "text-embedding-3-large",
        "options": {
          "dimensions": 1536
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "QpFZ2EiM3WGl6Zr3",
          "name": "Marketing OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "f3b44ef5-e928-4662-81ef-4dd044829607",
      "name": "Iterar sobre Elementos",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        -940,
        -440
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "cc572b71-65c9-460c-bdcd-1d20feb15b32",
      "name": "Nota Adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        940
      ],
      "parameters": {
        "color": 7,
        "width": 1380,
        "height": 820,
        "content": "![n8n](https://uploads.n8n.io/templates/qdrantlogo.png)\n## Embed your Vector Store\nTo provide data for your Vector store, you need to pass it in as JSON, and ensure it's setup correctly. This flow pulls the JSON file from Google Drive and extracts the JSON data and then passes it into the qdrant collection. "
      },
      "typeVersion": 1
    },
    {
      "id": "d5052d52-bec2-4b70-b460-6d5789c28d2c",
      "name": "Nota Adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        220
      ],
      "parameters": {
        "color": 7,
        "width": 1380,
        "height": 680,
        "content": "![n8n](https://uploads.n8n.io/templates/n8n.png)\n## Talk to your Vector Store\nNow that your vector store has been updated with the embedded data, \nyou can use the n8n chat interface to talk to your data using OpenAI, \nOllama, or any of our supported LLMs."
      },
      "typeVersion": 1
    },
    {
      "id": "5cb478f6-17f3-4d7a-9b66-9e0654bd1dc9",
      "name": "Nota Adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1460,
        -700
      ],
      "parameters": {
        "color": 7,
        "width": 2140,
        "height": 900,
        "content": "![Servicenow](https://uploads.n8n.io/templates/zendesk.png)\n## Deploy your Vector Store\nThis flow adds contextual information to your tickets using the Mitre Attack framework to help contextualize the ticket data."
      },
      "typeVersion": 1
    },
    {
      "id": "71ee28f5-84a2-4c6c-855a-6c7c09b2d62a",
      "name": "Analizador de Salida Estructurada",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        0,
        -160
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"ttp_identification\": {\n    \"alert_summary\": \"The alert indicates a check-in from the NetSupport RAT, a known Remote Access Trojan, suggesting command and control (C2) communication.\",\n    \"mitre_attack_ttps\": [\n      {\n        \"tactic\": \"Command and Control\",\n        \"technique\": \"Protocol or Service Impersonation\",\n        \"technique_id\": \"T1001.003\",\n        \"description\": \"The RAT's check-in over port 443 implies potential masquerading of its traffic as legitimate SSL/TLS traffic, a tactic often used to blend C2 communications with normal web traffic.\",\n        \"reference\": \"https://attack.mitre.org/techniques/T1001/003/\"\n      }\n    ]\n  },\n  \"remediation_steps\": {\n    \"network_segmentation\": {\n      \"action\": \"Isolate the affected host\",\n      \"target\": \"10.11.26.183\",\n      \"reason\": \"Prevents further C2 communication or lateral movement.\"\n    },\n    \"endpoint_inspection\": {\n      \"action\": \"Perform a thorough inspection\",\n      \"target\": \"Impacted endpoint\",\n      \"method\": \"Use endpoint detection and response (EDR) tools to check for additional persistence mechanisms.\"\n    },\n    \"network_traffic_analysis\": {\n      \"action\": \"Investigate and block unusual traffic\",\n      \"target\": \"IP 194.180.191.64\",\n      \"method\": \"Implement blocks for the IP across the firewall or IDS/IPS systems.\"\n    },\n    \"system_patching\": {\n      \"action\": \"Ensure all systems are updated\",\n      \"method\": \"Apply the latest security patches to mitigate vulnerabilities exploited by RAT malware.\"\n    },\n    \"ioc_hunting\": {\n      \"action\": \"Search for Indicators of Compromise (IoCs)\",\n      \"method\": \"Check for NetSupport RAT IoCs across other endpoints within the network.\"\n    }\n  },\n  \"historical_patterns\": {\n    \"network_anomalies\": \"Past alerts involving similar attempts to use standard web ports (e.g., 80, 443) for non-standard applications could suggest a broader attempt to blend malicious traffic into legitimate streams.\",\n    \"persistence_tactics\": \"Any detection of anomalies in task scheduling or shortcut modifications may indicate persistence methods similar to those used by RATs.\"\n  },\n  \"external_resources\": [\n    {\n      \"title\": \"ESET Report on Okrum and Ketrican\",\n      \"description\": \"Discusses similar tactics involving protocol impersonation and C2.\",\n      \"url\": \"https://www.eset.com/int/about/newsroom/research/okrum-ketrican/\"\n    },\n    {\n      \"title\": \"Malleable C2 Profiles\",\n      \"description\": \"Document on crafting custom C2 traffic profiles similar to the targeting methods used by NetSupport RAT.\",\n      \"url\": \"https://www.cobaltstrike.com/help-malleable-c2\"\n    },\n    {\n      \"title\": \"MITRE ATT&CK Technique Overview\",\n      \"description\": \"Overview of Protocol or Service Impersonation tactics.\",\n      \"url\": \"https://attack.mitre.org/techniques/T1001/003/\"\n    }\n  ]\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "3aeb973d-22e5-4eaf-8fe8-fae3447909e1",
      "name": "Obtener Datos MITRE desde Gdrive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -1140,
        1220
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "list",
          "value": "1oWBLO5AlIqbgo9mKD1hNtx92HdC6O28d",
          "cachedResultUrl": "https://drive.google.com/file/d/1oWBLO5AlIqbgo9mKD1hNtx92HdC6O28d/view?usp=drivesdk",
          "cachedResultName": "cleaned_mitre_attack_data.json"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "AVa7MXBLiB9NYjuO",
          "name": "Angel Gdrive"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "3b35633c-de80-4062-8497-cb65092d5708",
      "name": "Incrustar JSON en Colección Qdrant",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -520,
        1220
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5f7f2fd8-276f-4b3a-ae88-1f1765967883",
      "name": "Consultar Almacén Vectorial Qdrant",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -480,
        580
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "options": {},
        "toolName": "mitre_attack_vector_store",
        "toolDescription": "The mitre_attack_vector_store is a knowledge base trained on the MITRE ATT&CK framework. It is designed to help identify, correlate, and provide context for cybersecurity incidents based on textual descriptions of alerts, events, or behaviors. This tool leverages precomputed embeddings of attack techniques, tactics, and procedures (TTPs) to map user queries (such as SIEM-generated alerts or JIRA ticket titles) to relevant MITRE ATT&CK techniques.\n\nBy analyzing input text, the vector store can:\n\nRetrieve the most relevant MITRE ATT&CK entries (e.g., techniques, tactics, descriptions, external references).\nProvide structured context about potential adversary behaviors.\nSuggest remediation actions or detection methods based on the input.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "mitre",
          "cachedResultName": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "298ffc29-1d60-4c05-92c6-a61071629a3f",
      "name": "Consulta de Almacén Vectorial Qdrant",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -320,
        -200
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "options": {},
        "toolName": "mitre_attack_vector_store",
        "toolDescription": "The mitre_attack_vector_store is a knowledge base trained on the MITRE ATT&CK framework. It is designed to help identify, correlate, and provide context for cybersecurity incidents based on textual descriptions of alerts, events, or behaviors. This tool leverages precomputed embeddings of attack techniques, tactics, and procedures (TTPs) to map user queries (such as SIEM-generated alerts or JIRA ticket titles) to relevant MITRE ATT&CK techniques.\n\nBy analyzing input text, the vector store can:\n\nRetrieve the most relevant MITRE ATT&CK entries (e.g., techniques, tactics, descriptions, external references).\nProvide structured context about potential adversary behaviors.\nSuggest remediation actions or detection methods based on the input.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "mitre",
          "cachedResultName": "mitre"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "u0qre50aar6iqyxu",
          "name": "Angel MitreAttack Demo Cluster"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c47f0ae6-106d-46da-afc3-f7afb86923ff",
      "name": "Obtener todos los Tickets de Zendesk",
      "type": "n8n-nodes-base.zendesk",
      "position": [
        -1180,
        -440
      ],
      "parameters": {
        "options": {},
        "operation": "getAll"
      },
      "credentials": {
        "zendeskApi": {
          "id": "ROx0ipJapRomRxEX",
          "name": "Zendesk Demo Access"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0ec2c505-5721-41af-91c8-1b0b55826d9e",
      "name": "Actualizar Zendesk con Datos MITRE",
      "type": "n8n-nodes-base.zendesk",
      "position": [
        0,
        -360
      ],
      "parameters": {
        "id": "={{ $('Loop Over Items').item.json.id }}",
        "operation": "update",
        "updateFields": {
          "internalNote": "=Summary: {{ $json.output.ttp_identification.alert_summary }}\n\n",
          "customFieldsUi": {
            "customFieldsValues": [
              {
                "id": 34479547176212,
                "value": "={{ $json.output.ttp_identification.mitre_attack_ttps[0].technique_id }}"
              },
              {
                "id": 34479570659732,
                "value": "={{ $json.output.ttp_identification.mitre_attack_ttps[0].tactic }}"
              }
            ]
          }
        }
      },
      "credentials": {
        "zendeskApi": {
          "id": "ROx0ipJapRomRxEX",
          "name": "Zendesk Demo Access"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8",
      "name": "Pasar al siguiente ticket",
      "type": "n8n-nodes-base.noOp",
      "position": [
        360,
        -80
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "a5ba5090-8e3b-4408-82df-92d2c524039e": {
      "main": [
        []
      ]
    },
    "d8c29a14-0389-4748-a9de-686bf9a682c5": {
      "main": [
        [
          {
            "node": "0ec2c505-5721-41af-91c8-1b0b55826d9e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733": {
      "main": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3b44ef5-e928-4662-81ef-4dd044829607": {
      "main": [
        [],
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6e8a4aed-7e8c-492a-b816-6ab1a98c312a": {
      "ai_textSplitter": [
        [
          {
            "node": "561b0737-26d5-450d-bd9e-08e0a608d6f9",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "9b53566b-e021-403d-9d78-28504c5c1dfa": {
      "ai_embedding": [
        [
          {
            "node": "298ffc29-1d60-4c05-92c6-a61071629a3f",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "695fba89-8f42-47c3-9d86-73f4ea0e72df": {
      "main": [
        [
          {
            "node": "55f6c16a-51ed-45e4-a1ab-aaaf1d7b5733",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "67c52944-b616-4ea6-9507-e9fb6fcdbe2b": {
      "ai_languageModel": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "46a5b8c6-3d34-4e9b-b812-23135f28c278": {
      "ai_embedding": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "96b776a0-10da-4f70-99d0-ad6b6ee8fcca": {
      "ai_embedding": [
        [
          {
            "node": "5f7f2fd8-276f-4b3a-ae88-1f1765967883",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "55d0b00a-5046-45fa-87cb-cb0257caae87": {
      "ai_languageModel": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "561b0737-26d5-450d-bd9e-08e0a608d6f9": {
      "ai_document": [
        [
          {
            "node": "3b35633c-de80-4062-8497-cb65092d5708",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "0c54049e-b5e8-448f-b864-39aeb274de3e": {
      "ai_memory": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8": {
      "main": [
        [
          {
            "node": "f3b44ef5-e928-4662-81ef-4dd044829607",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c47f0ae6-106d-46da-afc3-f7afb86923ff": {
      "main": [
        [
          {
            "node": "f3b44ef5-e928-4662-81ef-4dd044829607",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "71ee28f5-84a2-4c6c-855a-6c7c09b2d62a": {
      "ai_outputParser": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "298ffc29-1d60-4c05-92c6-a61071629a3f": {
      "ai_tool": [
        [
          {
            "node": "d8c29a14-0389-4748-a9de-686bf9a682c5",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "5f7f2fd8-276f-4b3a-ae88-1f1765967883": {
      "ai_tool": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "86ddd018-3d6b-46b9-aa93-dedd6c6b5076": {
      "main": [
        [
          {
            "node": "a5ba5090-8e3b-4408-82df-92d2c524039e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "3aeb973d-22e5-4eaf-8fe8-fae3447909e1": {
      "main": [
        [
          {
            "node": "695fba89-8f42-47c3-9d86-73f4ea0e72df",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0ec2c505-5721-41af-91c8-1b0b55826d9e": {
      "main": [
        [
          {
            "node": "6a74a6d4-610a-4a13-afe4-7bb03d83d4c8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "0b9897b0-149b-43ce-b66c-e78552729aa5": {
      "main": [
        [
          {
            "node": "3aeb973d-22e5-4eaf-8fe8-fae3447909e1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Inteligencia Artificial, Operaciones de seguridad

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos26
Categoría2
Tipos de nodos17
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Autor
Angel Menendez

Angel Menendez

@djangelic

Angel Menendez is a Staff Developer Advocate at n8n.io, specializing in low-code tools for cybersecurity workflows. From Puerto Rico, Angel's tech journey began by helping his father translate technical books. He later started a web development business and transitioned from a career as a flight attendant to cybersecurity engineering. His workflows have saved companies significant time. Outside work, Angel enjoys time with his two sons, riding electric bikes, reading, and exploring new places.

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34