Potenciar la experiencia de chat de clientes mediante la almacenación en búfer de mensajes con Twilio y Redis
Este es unSupport, Product, AIflujo de automatización del dominio deautomatización que contiene 18 nodos.Utiliza principalmente nodos como If, Set, Wait, Redis, Twilio, combinando tecnología de inteligencia artificial para lograr automatización inteligente. usoTwilioyRedis缓冲mensaje功能增强clientechat体验
- •Información de conexión del servidor Redis
- •Clave de API de OpenAI
Nodos utilizados (18)
{
"meta": {
"instanceId": "26ba763460b97c249b82942b23b6384876dfeb9327513332e743c5f6219c2b8e"
},
"nodes": [
{
"id": "d61d8ff3-532a-4b0d-a5a7-e02d2e79ddce",
"name": "Modelo de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
2660,
480
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "b6d5c1cf-b4a1-4901-b001-0c375747ee63",
"name": "Sin operación, do nothing",
"type": "n8n-nodes-base.noOp",
"position": [
1660,
520
],
"parameters": {},
"typeVersion": 1
},
{
"id": "f4e08e32-bb96-4b5d-852e-26ad6fec3c8c",
"name": "Add to Messages Stack",
"type": "n8n-nodes-base.redis",
"position": [
1340,
200
],
"parameters": {
"list": "=chat-buffer:{{ $json.From }}",
"tail": true,
"operation": "push",
"messageData": "={{ $json.Body }}"
},
"credentials": {
"redis": {
"id": "zU4DA70qSDrZM1El",
"name": "Redis account"
}
},
"typeVersion": 1
},
{
"id": "181ae99e-ebe7-4e99-b5a5-999acc249621",
"name": "Should Continue?",
"type": "n8n-nodes-base.if",
"position": [
1660,
360
],
"parameters": {
"options": {},
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "ec39573f-f92a-4fe4-a832-0a137de8e7d0",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Get Latest Message Stack').item.json.messages.last() }}",
"rightValue": "={{ $('Twilio Trigger').item.json.Body }}"
}
]
}
},
"typeVersion": 2
},
{
"id": "640c63ca-2798-48a9-8484-b834c1a36301",
"name": "Window Buffer Memoria",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
2780,
480
],
"parameters": {
"sessionKey": "=chat-debouncer:{{ $('Twilio Trigger').item.json.From }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.2
},
{
"id": "123c35c5-f7b2-4b4d-b220-0e5273e25115",
"name": "Twilio Trigger",
"type": "n8n-nodes-base.twilioTrigger",
"position": [
940,
360
],
"webhookId": "0ca3da0e-e4e1-4e94-8380-06207bf9b429",
"parameters": {
"updates": [
"com.twilio.messaging.inbound-message.received"
]
},
"credentials": {
"twilioApi": {
"id": "TJv4H4lXxPCLZT50",
"name": "Twilio account"
}
},
"typeVersion": 1
},
{
"id": "f4e86455-7f4d-4401-8f61-a859be1433a9",
"name": "Get Latest Message Stack",
"type": "n8n-nodes-base.redis",
"position": [
1500,
360
],
"parameters": {
"key": "=chat-buffer:{{ $json.From }}",
"keyType": "list",
"options": {},
"operation": "get",
"propertyName": "messages"
},
"credentials": {
"redis": {
"id": "zU4DA70qSDrZM1El",
"name": "Redis account"
}
},
"typeVersion": 1,
"alwaysOutputData": false
},
{
"id": "02f8e7f5-12b4-4a5a-9ce9-5f0558e447aa",
"name": "Nota adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
1232.162872321277,
-50.203627749982275
],
"parameters": {
"color": 7,
"width": 632.8309394802918,
"height": 766.7069233634998,
"content": "## Step 2. Buffer Incoming Messages\n[Learn more about using Redis](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.redis)\n\n* New messages are captured into a list.\n* After X seconds, we get a fresh copy of this list\n* If the last message on the list is the same as the incoming message, then we know no new follow-on messages were sent within the last 5 seconds. Hence the user should be waiting and it is safe to reply.\n* But if the reverse is true, then we will abort the execution here."
},
"typeVersion": 1
},
{
"id": "311c0d69-a735-4435-91b6-e80bf7d4c012",
"name": "Send Reply",
"type": "n8n-nodes-base.twilio",
"position": [
3000,
320
],
"parameters": {
"to": "={{ $('Twilio Trigger').item.json.From }}",
"from": "={{ $('Twilio Trigger').item.json.To }}",
"message": "={{ $json.output }}",
"options": {}
},
"credentials": {
"twilioApi": {
"id": "TJv4H4lXxPCLZT50",
"name": "Twilio account"
}
},
"typeVersion": 1
},
{
"id": "c0e0cd08-66e3-4ca3-9441-8436c0d9e664",
"name": "Esperar 5 seconds",
"type": "n8n-nodes-base.wait",
"position": [
1340,
360
],
"webhookId": "d486979c-8074-4ecb-958e-fcb24455086b",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "c7959fa2-69a5-46b4-8e67-1ef824860f4e",
"name": "Get Chat History",
"type": "@n8n/n8n-nodes-langchain.memoryManager",
"position": [
2000,
280
],
"parameters": {
"options": {
"groupMessages": true
}
},
"typeVersion": 1.1
},
{
"id": "55933c54-5546-4770-8b36-a31496163528",
"name": "Window Buffer Memoria1",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
2000,
420
],
"parameters": {
"sessionKey": "=chat-debouncer:{{ $('Twilio Trigger').item.json.From }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.2
},
{
"id": "459c0181-d239-4eec-88b6-c9603868d518",
"name": "Nota adhesiva1",
"type": "n8n-nodes-base.stickyNote",
"position": [
774.3250485705519,
198.07493876489747
],
"parameters": {
"color": 7,
"width": 431.1629802181097,
"height": 357.49804533541777,
"content": "## Step 1. Listen for Twilio Messages\n[Read more about Twilio Trigger](https://docs.n8n.io/integrations/builtin/trigger-nodes/n8n-nodes-base.twiliotrigger)\n\nIn this example, we'll use the sender's phone number as the session ID. This will be important in retrieving chat history."
},
"typeVersion": 1
},
{
"id": "e06313a9-066a-4387-a36c-a6c6ff57d6f9",
"name": "Nota adhesiva2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1900,
80
],
"parameters": {
"color": 7,
"width": 618.970917763344,
"height": 501.77420646931444,
"content": "## Step 3. Get Messages Since Last Reply\n[Read more about using Chat Memory](https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.memorymanager)\n\nOnce conditions are met and we allow the agent to reply, we'll need to find the bot's last reply and work out the buffer of user messages since then. We can do this by looking using chat memory and comparing this to the latest message in our redis messages stack."
},
"typeVersion": 1
},
{
"id": "601a71f6-c6f8-4b73-98c7-cfa11b1facaa",
"name": "Get Messages Buffer",
"type": "n8n-nodes-base.set",
"position": [
2320,
280
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "01434acb-c224-46d2-99b0-7a81a2bb50c5",
"name": "messages",
"type": "string",
"value": "={{\n$('Get Latest Message Stack').item.json.messages\n .slice(\n $('Get Latest Message Stack').item.json.messages.lastIndexOf(\n $('Get Chat History').item.json.messages.last().human\n || $('Twilio Trigger').item.json.chatInput\n ),\n $('Get Latest Message Stack').item.json.messages.length\n )\n .join('\\n')\n}}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9e49f2de-89e6-4152-8e9c-ed47c5fc4654",
"name": "Nota adhesiva3",
"type": "n8n-nodes-base.stickyNote",
"position": [
2549,
120
],
"parameters": {
"color": 7,
"width": 670.2274698011594,
"height": 522.5993538768389,
"content": "## Step 4. Send Single Agent Reply For Many Messages\n[Learn more about using AI Agents](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n\nFinally, our buffered messages are sent to the AI Agent that can formulate a single response for all. This could potentially improve the conversation experience if the chat interaction is naturally more rapid and spontaneous. A drawback however is that responses could be feel much slower - tweak the wait threshold to suit your needs!"
},
"typeVersion": 1
},
{
"id": "be13c74a-467c-4ab1-acca-44878c68dba4",
"name": "Nota adhesiva4",
"type": "n8n-nodes-base.stickyNote",
"position": [
380,
80
],
"parameters": {
"width": 375.55385425077225,
"height": 486.69228315530853,
"content": "## Try It Out!\n### This workflow demonstrates a simple approach to stagger an AI Agent's reply if users often send in a sequence of partial messages and in short bursts.\n\n* Twilio webhook receives user's messages which are recorded in a message stack powered by Redis.\n* The execution is immediately paused for 5 seconds and then another check is done against the message stack for the latest message.\n* The purpose of this check lets use know if the user is sending more messages or if they are waiting for a reply.\n* The execution is aborted if the latest message on the stack differs from the incoming message and continues if they are the same.\n* For the latter, the agent receives buffered messages and is able to respond to all in a single reply."
},
"typeVersion": 1
},
{
"id": "334d38e1-ec16-46f2-a57d-bf531adb8d3d",
"name": "Agente IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2660,
320
],
"parameters": {
"text": "={{ $json.messages }}",
"agent": "conversationalAgent",
"options": {},
"promptType": "define"
},
"typeVersion": 1.6
}
],
"pinData": {},
"connections": {
"AI Agent": {
"main": [
[
{
"node": "311c0d69-a735-4435-91b6-e80bf7d4c012",
"type": "main",
"index": 0
}
]
]
},
"123c35c5-f7b2-4b4d-b220-0e5273e25115": {
"main": [
[
{
"node": "f4e08e32-bb96-4b5d-852e-26ad6fec3c8c",
"type": "main",
"index": 0
},
{
"node": "Wait 5 seconds",
"type": "main",
"index": 0
}
]
]
},
"Wait 5 seconds": {
"main": [
[
{
"node": "f4e86455-7f4d-4401-8f61-a859be1433a9",
"type": "main",
"index": 0
}
]
]
},
"c7959fa2-69a5-46b4-8e67-1ef824860f4e": {
"main": [
[
{
"node": "601a71f6-c6f8-4b73-98c7-cfa11b1facaa",
"type": "main",
"index": 0
}
]
]
},
"181ae99e-ebe7-4e99-b5a5-999acc249621": {
"main": [
[
{
"node": "c7959fa2-69a5-46b4-8e67-1ef824860f4e",
"type": "main",
"index": 0
}
],
[
{
"node": "No Operation, do nothing",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"601a71f6-c6f8-4b73-98c7-cfa11b1facaa": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Window Buffer Memory1": {
"ai_memory": [
[
{
"node": "c7959fa2-69a5-46b4-8e67-1ef824860f4e",
"type": "ai_memory",
"index": 0
}
]
]
},
"f4e86455-7f4d-4401-8f61-a859be1433a9": {
"main": [
[
{
"node": "181ae99e-ebe7-4e99-b5a5-999acc249621",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Avanzado - Soporte, Producto, Inteligencia Artificial
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Jimleuk
@jimleukFreelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk
Compartir este flujo de trabajo