Schlüsselwort-Klassifizierung
Experte
Dies ist ein Automatisierungsworkflow mit 40 Nodes. Hauptsächlich werden Set, Filter, Airtable, SplitOut, Aggregate und andere Nodes verwendet. Klassifizierung von SEO-Keywords mit KI und Airtable und Erstellung einer Inhaltstrategie
Voraussetzungen
- •Airtable API Key
- •OpenAI API Key
Verwendete Nodes (40)
Kategorie
-
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"id": "mGgSDkJTDBI4mq1J",
"meta": {
"instanceId": "642e489d8be5ef18e94f4513d3dbcdb97cfdc6b36fc67668bf60c866346c5a09",
"templateCredsSetupCompleted": true
},
"name": "Categorize Keywords",
"tags": [
{
"id": "AZvUGDdqsfK0AaPB",
"name": "Content Creation",
"createdAt": "2025-09-09T14:22:23.903Z",
"updatedAt": "2025-09-09T14:22:23.903Z"
}
],
"nodes": [
{
"id": "478452bb-0bf2-46c0-8644-d4f9bd2e31c7",
"name": "Bei Klick auf 'Workflow testen'",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1024,
864
],
"parameters": {},
"typeVersion": 1
},
{
"id": "95bd2d16-c8eb-4841-8a89-61f60bb111ac",
"name": "Haftnotiz",
"type": "n8n-nodes-base.stickyNote",
"position": [
48,
224
],
"parameters": {
"width": 520,
"height": 540,
"content": "## Gets KWs from Master List and Categorizes\nCategorizes keywords as Quick Wins, Authority Builders, Emerging Topics, and Unknown."
},
"typeVersion": 1
},
{
"id": "c222ee7d-0791-40ad-9780-e3d067d01ffa",
"name": "Haftnotiz1",
"type": "n8n-nodes-base.stickyNote",
"position": [
848,
144
],
"parameters": {
"width": 520,
"height": 260,
"content": "## Send All Categorized Keywords to Airtable\n"
},
"typeVersion": 1
},
{
"id": "b99967c3-a895-47bf-9b57-cbdde4f3394b",
"name": "Haftnotiz2",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
448
],
"parameters": {
"width": 1720,
"height": 460,
"content": "## Creates Title and Description for each categorized keyword.\nSends to Airtable"
},
"typeVersion": 1
},
{
"id": "4d98bb25-96b6-4e2c-8e1d-1b9929259ea5",
"name": "Agent: Content-Optionen erstellen",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1440,
1504
],
"parameters": {
"text": "=For each of the {{ $('Edit Fields2').item.json.number_of_clusters }} clusters, consider its:\n- cluster_name: {{ $json.cluster_name }}\n- core_topic: {{ $json.core_topic }}\n- intent_pattern:{{ $json.intent_pattern }}\n- keywords: {{ $json.keywords }}\n- reasoning: {{ $json.reasoning }}\n- primary_keyword: {{ $json.primary_keyword }}\nTo create one hub article and 5 spoke articles.\n\nYou are creating a hub and spoke content strategy. For each hub and spoke article, you will create:\n- title: an seo-optimized title that is engaging and reflects the article content. It is around 60 characters long.\n- description: 3 to 5 paragraphs desribing the article\n- keyword: the primary keyword of the article\n\nTo create the clusters group all keywords with the same cluster_name. Give each cluster a name and type of either hub or spoke. There will be one hub article and up to 5 spoke articles per cluster.\n\nThe hub article serves as the central piece of content that provides a broad overview of a main topic. The spoke articles are detailed content pieces that branch out from the hub, each focusing on specific subtopics.\n\nImportant: Each cluster as defined above should have one hub article and up to 5 spoke articles. Always make sure that hub and spoke articles are created for each cluster.\nConsider the following when creating the hub and spoke articles.\n1. cluster_name\n2. title\n- SEO-optimized\n- Under 62 characters\n3. description\n- 3-5 paragraphs desribing the article\n4. type \n- hub or spoke\n\nReturn a single-line JSON object with this structure for each cluster (no line breaks). \n {\n \"cluster_name\": \"descriptive name\",\n \"title\": \"the title\",\n \"description\": \"the description\",\n \"type\": \"either hub or spoke\",\n \"keyword\": \"the primary keyword\"\n \"reasoning\": \"reasoning for the cluster\"\n }\n\nImportant: Return ONLY the JSON array with NO line breaks (\\n), NO extra quotations, NO extra spaces, and NO additional text.\n\n\n\n",
"options": {
"systemMessage": "You are an AI content strategist specializing in creating seo-optimized hub and spoke content structures. For each cluster, create one main hub article and up to 5 supporting spoke articles that comprehensively cover the topic while maintaining SEO best practices and user intent.\n"
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "88679472-31f9-499f-86f0-7b06fa058f0b",
"name": "Haftnotiz4",
"type": "n8n-nodes-base.stickyNote",
"position": [
32,
1072
],
"parameters": {
"width": 800,
"height": 520,
"content": "## Clusters KWs from Master KW All Variations List\nCreates clusters based on semantic similarity and search intent."
},
"typeVersion": 1
},
{
"id": "b482852c-8502-4b0d-b42e-819a1cb02e9a",
"name": "Haftnotiz5",
"type": "n8n-nodes-base.stickyNote",
"position": [
880,
1072
],
"parameters": {
"width": 1120,
"height": 260,
"content": "## Adds Cluster and Keywords to Clusters Sheet\n"
},
"typeVersion": 1
},
{
"id": "1bb158eb-5092-4aa9-be97-98c3fd8a4125",
"name": "Haftnotiz6",
"type": "n8n-nodes-base.stickyNote",
"position": [
880,
1360
],
"parameters": {
"width": 1600,
"height": 460,
"content": "## Create Hub and Spoke Content Opportunities\nCreates title and description for Hub and Spoke content opportunities.\nPrompted (at the moment) to create 5 supporting articles for each pillar."
},
"typeVersion": 1
},
{
"id": "a52ef80c-284c-491b-a4c5-509748fffd10",
"name": "Haftnotiz7",
"type": "n8n-nodes-base.stickyNote",
"position": [
0,
0
],
"parameters": {
"color": 3,
"width": 2544,
"height": 920,
"content": "## Categorize and Create Content Opportunities\n"
},
"typeVersion": 1
},
{
"id": "656ea262-9516-4ef9-9ac7-3748d18d0ae9",
"name": "Haftnotiz8",
"type": "n8n-nodes-base.stickyNote",
"position": [
0,
960
],
"parameters": {
"color": 3,
"width": 2540,
"height": 920,
"content": "## Cluster and Create Content Opportunities\n"
},
"typeVersion": 1
},
{
"id": "85391b1c-4813-4466-a710-4055f8788421",
"name": "Unbekannte filtern",
"type": "n8n-nodes-base.filter",
"position": [
880,
560
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "fa613938-57a8-49f6-a01b-723028c6cbf3",
"operator": {
"type": "string",
"operation": "notEquals"
},
"leftValue": "={{ $json.fields.Category }}",
"rightValue": "Unknown"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "7ad32cab-aa16-4f85-ac97-9b4c395ef649",
"name": "Felder der Kategorietabelle setzen",
"type": "n8n-nodes-base.set",
"position": [
944,
240
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "3f1f38b9-8941-4047-8904-270b17bfc2ed",
"name": "keyword",
"type": "string",
"value": "={{ JSON.parse($json.output).keyword }}"
},
{
"id": "849f572c-1339-4a83-bd4c-2b4c13cd80d4",
"name": "category",
"type": "string",
"value": "={{ JSON.parse($json.output).category }}"
},
{
"id": "5909d7fe-6050-490d-bf90-ad0817d882a0",
"name": "reasoning",
"type": "string",
"value": "={{ JSON.parse($json.output).reasoning }}"
},
{
"id": "aeb81379-fba7-483d-828c-427f2851ee87",
"name": "msv",
"type": "number",
"value": "={{ JSON.parse($json.output).msv }}"
},
{
"id": "3b7b8188-de51-4a6b-95cb-73a8de200996",
"name": "kw_difficulty",
"type": "number",
"value": "={{ JSON.parse($json.output).kw_difficulty }}"
},
{
"id": "013f802d-6c2e-4519-8104-5d3951f845cd",
"name": "search_intent",
"type": "string",
"value": "={{ JSON.parse($json.output).search_intent }}"
},
{
"id": "a2799b9e-8c28-4c02-8162-2874cae2bf2b",
"name": "competition",
"type": "string",
"value": "={{ JSON.parse($json.output).competition }}"
},
{
"id": "7929eaff-788c-43fa-899f-cd04953f8f7f",
"name": "cpc",
"type": "number",
"value": "={{ JSON.parse($json.output).cpc }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "43bb97fe-3742-4f59-a010-6f62e78015f7",
"name": "Kategorietabelle",
"type": "n8n-nodes-base.airtable",
"position": [
1168,
240
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.airtable_base_id }}"
},
"table": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.categories_table_id }}"
},
"columns": {
"value": {
"CPC": "={{ $json.cpc }}",
"MSV": "={{ $json.msv }}",
"Keyword": "={{ $json.keyword }}",
"Category": "={{ $json.category }}",
"Reasoning": "={{ $json.reasoning }}",
"Competition": "={{ $json.competition }}",
"KW Difficulty": "={{ $json.kw_difficulty }}",
"Search Intent": "={{ $json.search_intent }}"
},
"schema": [
{
"id": "Category",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Category",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reasoning",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Reasoning",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "MSV",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "MSV",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "KW Difficulty",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "KW Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Search Intent",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Search Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Competition",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Competition",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "CPC",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "CPC",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "IdMuG6Ja3xc0kVnw",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "e20decb0-fd75-4cd4-8b4c-3143d2dd9217",
"name": "Content aus Kategoriefeldern setzen",
"type": "n8n-nodes-base.set",
"position": [
1104,
560
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "cae1e309-cab6-472a-9bfc-75448a504455",
"name": "keyword",
"type": "string",
"value": "={{ $json.fields.Keyword }}"
},
{
"id": "1c725316-fa66-401c-b028-6039c7845540",
"name": "category",
"type": "string",
"value": "={{ $json.fields.Category }}"
},
{
"id": "328a070b-312e-4c39-bacb-970d0e485e7a",
"name": "reasoning",
"type": "string",
"value": "={{ $json.fields.Reasoning }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "852c9c71-f2bd-4aa6-abed-5f6a4aee633d",
"name": "KI-Agent für Kategorien",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
192,
368
],
"parameters": {
"text": "=Please categorize the following keywords according to the rules. Ensure every keyword is processed and included in the output.\n\nKeyword to Categorize and Data for Categorization:\n {{ $json.keyword }}\n{{ $json.msv }}\n{{ $json.search_intent }}\n{{ $json.kw_difficulty }}\n{{ $json.competition }}\n{{ $json.cpc }}\n",
"options": {
"systemMessage": "You are an AI agent specialized in analyzing and categorizing SEO keywords and search intent signals.\n\nCategorization Rules:\n1. Quick Wins:\n - MSV > 100 AND KW Difficulty < 30\n - These are opportunities for relatively fast ranking\n\n2. Authority Builders:\n - KW Difficulty > 50 AND MSV > 200\n - High-value terms worth investing in for authority building\n\n3. Emerging Topics:\n - MSV < 100 OR (doesn't fit Quick Wins AND shows future potential)\n - Focus on search intent and growth potential\n- Represent trends or novel concepts that are likely to grow in popularity\n\n4. Intent Signals:\n - People Also Ask questions\n - Direct user questions that show search intent\n - Good opportunities for featured snippets and AI results\n - Categorize here even if metrics are missing\n\n5. Semantic Topics:\n - Autocomplete suggestions and semantic subtopics\n - Related concepts that build topic authority\n - Categorize here even if metrics are missing\n\n6. Unknown:\n - Keywords that don't fit other categories\n - Or have insufficient data and aren't questions/semantic topics\n\nReturn only a JSON object for each keyword with these exact fields:\n{\n \"keyword\": \"exact keyword text\",\n \"category\": \"Quick Wins|Authority Builders|Emerging Topics|Intent Signals|Semantic Topics|Unknown\",\n \"reasoning\": \"brief explanation of categorization\",\n \"msv\": number or null,\n \"kw_difficulty\": number or null,\n \"search_intent\": \"original intent or null\",\n \"competition\": \"original competition or null\",\n \"cpc\": number or null\n}\n\n\nImportant: Return ONLY the JSON object with NO line breaks (\\n), NO extra spaces, and NO additional text.\n\nImportant:\n- Process EVERY keyword in the input\n- Preserve all original data\n- Ensure total_processed matches input count\n- Provide brief reasoning for each categorization\n- please be accurate with the language, if the researches are made in Dutch, write in Dutch"
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "61240f06-f973-49de-9327-08130f0a3b39",
"name": "Content-Ideen vom KI-Kategorieagenten",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1584,
640
],
"parameters": {
"text": "=For each keyword, analyze its category and reasoning to create:\n\n1. A title that:\n - Captures search intent\n - Is engaging and clickable\n - Includes the main keyword naturally\n - Is optimized for both search and social sharing\n - Is under 60 characters\n - Aligns with the category context: {{ $json.category }}\n \n2. A description that:\n - Clearly outlines the main topics and key points the article should cover\n - Indicates specific value readers will gain\n - Provides enough context to guide content creation\n - Naturally incorporates the keyword\n - Is concise but comprehensive (aim for 2-3 sentences)\n - Considers the categorization reasoning: {{ $json.reasoning }}\n\nInput:\n\n{{ $json.keyword }}\n\nReturn a single-line JSON object with this structure (no line breaks):\n{\"keyword\":\"input keyword\",\"title\":\"created title\",\"description\":\"article description\"}",
"options": {
"systemMessage": "You are an AI content strategist specialized in creating engaging, SEO-optimized titles and article descriptions."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "ccf02d2e-596b-47fa-bea5-9f5ba666c054",
"name": "Workflow-Felder setzen",
"type": "n8n-nodes-base.set",
"position": [
-208,
864
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "acee4494-86dc-4f48-b5d8-e18e7db9eaaa",
"name": "keyword",
"type": "string",
"value": "={{ $json.Keyword }}"
},
{
"id": "575ec827-4dd3-4d4c-8aca-14c80f4a9015",
"name": "record_id",
"type": "string",
"value": "={{ $json.id }}"
},
{
"id": "b5d76b17-8473-4369-9c50-7c0194bce34e",
"name": "primary_keyword",
"type": "string",
"value": "={{ $json['Primary Keyword'] }}"
},
{
"id": "8e4e71d4-662f-4c59-9f01-5b0f14ffb54f",
"name": "competition",
"type": "string",
"value": "={{ $json.Competition }}"
},
{
"id": "5925b3bb-8581-4dfa-9aec-b3578cabef35",
"name": "msv",
"type": "number",
"value": "={{ $json.MSV }}"
},
{
"id": "4de58314-1701-4a95-9826-f28233c1a87d",
"name": "search_intent",
"type": "string",
"value": "={{ $json['Search Intent'] }}"
},
{
"id": "dfb906d8-3c2e-446e-bee3-d24ba4610927",
"name": "kw_difficulty",
"type": "number",
"value": "={{ $json['KW Difficulty'] }}"
},
{
"id": "2fdf1cd1-742b-418b-8966-33823c5aa90b",
"name": "type",
"type": "string",
"value": "={{ $json.Type }}"
},
{
"id": "89472023-1df7-4d64-b874-9106dee97866",
"name": "cpc",
"type": "number",
"value": "={{ $json.CPC }}"
},
{
"id": "9fdccded-22de-4daf-86bb-67ae1db5bfec",
"name": "Date Pulled from D4SEO",
"type": "string",
"value": "={{ $json['Date Pulled from D4SEO'] }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9eb70197-dc70-4696-8c0f-3175200d2bc3",
"name": "Feld der Content-Ideen-Tabelle setzen",
"type": "n8n-nodes-base.set",
"position": [
1952,
640
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "3b11eddb-dfa2-4e28-a4e5-8cf3996e3e56",
"name": "keyword",
"type": "string",
"value": "={{ JSON.parse($json.output).keyword }}"
},
{
"id": "eaa730fd-678f-42fb-95d7-fb0210fefcd7",
"name": "title",
"type": "string",
"value": "={{ JSON.parse($json.output).title }}"
},
{
"id": "eb7f4d7d-c669-4f13-acfc-109e6af78f96",
"name": "description",
"type": "string",
"value": "={{ JSON.parse($json.output).description }}"
},
{
"id": "76254565-f080-41d6-b8ed-e71d22c315da",
"name": "primary_keyword",
"type": "string",
"value": "={{ $('Set WF Fields').item.json.primary_keyword }}"
},
{
"id": "619a217e-8526-499d-826a-8874364f0b3b",
"name": "reasoning",
"type": "string",
"value": "={{ $('Filter Out Unknown').item.json.fields.Reasoning }}"
},
{
"id": "74a4cb6e-8ca6-4ebe-b821-1b26d018d1b8",
"name": "category",
"type": "string",
"value": "={{ $('Filter Out Unknown').item.json.fields.Category }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "27cbaea3-5b5d-4c2c-b687-3f0784aec8a7",
"name": "Content-Ideen-Tabelle für Kategorien",
"type": "n8n-nodes-base.airtable",
"position": [
2160,
640
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.airtable_base_id }}"
},
"table": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.content_ideas_from_kws_table_id }}"
},
"columns": {
"value": {
"Title": "={{ $json.title }}",
"Status": "Not Started",
"Keyword": "={{ $json.keyword }}",
"Category": "={{ $json.category }}",
"Reasoning": "={{ $json.reasoning }}",
"Description": "={{ $json.description }}",
"Primary Keyword": "={{ $json.primary_keyword }}"
},
"schema": [
{
"id": "Title",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Status",
"type": "options",
"display": true,
"options": [
{
"name": "Not Started",
"value": "Not Started"
},
{
"name": "Send to Article Writer",
"value": "Send to Article Writer"
},
{
"name": "Discard",
"value": "Discard"
},
{
"name": "In Article Writer",
"value": "In Article Writer"
}
],
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Status",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Description",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Description",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Primary Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Primary Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Category",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Category",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reasoning",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Reasoning",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "IdMuG6Ja3xc0kVnw",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "a999e95d-8118-4fad-b5e1-9bea18160b54",
"name": "Felder bearbeiten1",
"type": "n8n-nodes-base.set",
"position": [
992,
1168
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "99ad3918-128a-4617-a7b0-d4aac162316c",
"name": "items",
"type": "array",
"value": "={{ $json.output.parseJson().clusters }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "d1dfbd10-6e9c-4b1c-821b-fa229d17ef18",
"name": "Aufteilen",
"type": "n8n-nodes-base.splitOut",
"position": [
1200,
1168
],
"parameters": {
"options": {},
"fieldToSplitOut": "items"
},
"typeVersion": 1
},
{
"id": "a6bed31e-9781-44f9-b87c-3d11091d0375",
"name": "Felder für Airtable setzen",
"type": "n8n-nodes-base.set",
"position": [
1424,
1168
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1cccc58b-8eb5-473e-bd57-10b512b64226",
"name": "cluster_name",
"type": "string",
"value": "={{ $json.cluster_name }}"
},
{
"id": "9e00d18c-e025-4125-99a9-c6c46ba9ddc4",
"name": "core_topic",
"type": "string",
"value": "={{ $json.core_topic }}"
},
{
"id": "eea33e0b-32c8-420c-ba7a-b0dd9cf45bcd",
"name": "intent_pattern",
"type": "string",
"value": "={{ $json.intent_pattern }}"
},
{
"id": "15a26f8f-73d4-4200-a22f-dfbe1f6a57ac",
"name": "keywords",
"type": "array",
"value": "={{ $json.keywords }}"
},
{
"id": "d164bda0-5f4f-4763-a5ca-5d418b505384",
"name": "reasoning",
"type": "string",
"value": "={{ $json.reasoning }}"
},
{
"id": "d9cdd3c1-ea3f-4f86-a7cc-2cb98560142e",
"name": "primary_keyword",
"type": "string",
"value": "={{ $json.primary_keyword }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "3825f2ca-0ecf-40ce-9a39-971ddd242a39",
"name": "Aufteilen1",
"type": "n8n-nodes-base.splitOut",
"position": [
1648,
1168
],
"parameters": {
"options": {},
"fieldToSplitOut": "keywords"
},
"typeVersion": 1
},
{
"id": "d540d82a-ebb4-4876-82c3-321cc9675d6c",
"name": "Aufteilen2",
"type": "n8n-nodes-base.splitOut",
"position": [
1248,
1504
],
"parameters": {
"options": {},
"fieldToSplitOut": "items"
},
"typeVersion": 1
},
{
"id": "5491d95a-f718-4090-b806-6a1d4f41ee2c",
"name": "OpenAI Chat-Modell",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1440,
1680
],
"parameters": {
"model": "gpt-4o",
"options": {}
},
"credentials": {
"openAiApi": {
"id": "O3hYHprN7nmmN09U",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "d769b8bb-16ad-4dac-9d87-22c942e3e6ff",
"name": "KI-Agent: Keywords analysieren und clustern",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
480,
1200
],
"parameters": {
"text": "=Analyze ALL keywords as a complete dataset and identify natural semantic clusters. Let the number and size of clusters emerge from the relationships in the data. Each keyword should be assigned to its most relevant cluster based on semantic meaning and user intent.\n\nGuidelines for clustering:\n- Identify genuine thematic relationships across keywords\n- Group keywords based on semantic similarity and shared user intents\n- Consider how different keyword types complement each other in revealing topic patterns\n- Let cluster count and size be determined by the natural groupings in the data\n- Each keyword should belong to exactly one cluster\n\nReturn a single-line JSON object with this structure (no line breaks):\n{\n \"total_keywords_processed\": number,\n \"number_of_clusters\": number,\n \"clusters\": [\n {\n \"cluster_name\": \"descriptive name\",\n \"core_topic\": \"main theme or focus\",\n \"intent_pattern\": \"primary user intent pattern\",\n \"keywords\": [\"array of all keywords in this cluster\"],\n \"reasoning\": \"explanation of why these keywords form a coherent cluster\",\n \"primary_keyword\": \"the primary keyword\"\n }\n ]\n}\n\nIMPORTANT: Do not include extra spaces, backticks ```, or any comments about what you did. Do not include \\n in any part of the output.\n\nInput data:\n{{ $json.keyword_dataset }}\n\n",
"options": {
"systemMessage": "=You are an AI expert in semantic analysis and content clustering. Your task is to analyze a collection of keywords holistically and identify natural semantic clusters based on:\n- Thematic relationships\n- User intent patterns\n- Topic hierarchies\n- Search behavior signals across different keyword types (direct searches, questions, suggestions)\n\nConsider both keywords with metrics (search_intent) and those without (people also ask, subtopics, autocomplete) as they represent different aspects of user intent."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "5ca9e9cf-5782-4ef9-8c6c-764b9397f6ed",
"name": "Felder bearbeiten2",
"type": "n8n-nodes-base.set",
"position": [
1024,
1504
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "99ad3918-128a-4617-a7b0-d4aac162316c",
"name": "items",
"type": "array",
"value": "={{ $json.output.parseJson().clusters }}"
},
{
"id": "478eb15a-a8bb-4fc5-b488-487dfdd1e3c7",
"name": "number_of_clusters",
"type": "string",
"value": "={{ $json.output.parseJson().number_of_clusters }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "85f81a82-e602-463e-b0c8-8904d6c792a1",
"name": "Felder bearbeiten3",
"type": "n8n-nodes-base.set",
"position": [
1792,
1504
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "99ad3918-128a-4617-a7b0-d4aac162316c",
"name": "items",
"type": "array",
"value": "={{ $json.output.parseJson() }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "98ae124b-2a5d-4f9b-8f87-5255a94fd622",
"name": "Aufteilen3",
"type": "n8n-nodes-base.splitOut",
"position": [
2000,
1504
],
"parameters": {
"options": {},
"fieldToSplitOut": "items"
},
"typeVersion": 1
},
{
"id": "fb434fe3-29dc-4187-a191-69bdc9f98bc7",
"name": "Keywords für Agent aggregieren",
"type": "n8n-nodes-base.aggregate",
"position": [
64,
1200
],
"parameters": {
"include": "specifiedFields",
"options": {},
"aggregate": "aggregateAllItemData",
"fieldsToInclude": "keyword, primary_keyword, type, search_intent"
},
"typeVersion": 1
},
{
"id": "0c9465e0-cae0-408f-b958-641528b703dc",
"name": "Feld für Agent setzen",
"type": "n8n-nodes-base.set",
"position": [
272,
1200
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "909557e4-1568-4f9b-8fab-96cc37faf290",
"name": "keyword_dataset",
"type": "string",
"value": "={{ $json.data }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "e91fe6b8-6c95-4d2a-b4f2-576f33cff58b",
"name": "Über Elemente iterieren",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1360,
560
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "3313ca14-3810-4fd4-908f-8a54291b52a8",
"name": "Haftnotiz9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1680,
288
],
"parameters": {
"color": 3,
"width": 540,
"height": 820,
"content": "# Setup \n\n## 1. Copy this Airtable base: [KW Research Content Ideation](https://airtable.com/apphzhR0wI16xjJJs/shrsojqqzGpgMJq9y)\n## Important: Copy the base. Please do not ask for access. \n## 2. Set Airtable Base Id\nWith your (copied) Airtable base open (to any table), copy the base id from the url.\n\nThe base id begins with app. For example: https://airtable.com/apphzhR0wI16xjJJs/tblewTSMwBdGQKUuZ/\napphzhR0wI16xjJJs is the base id. Enter this into the Set Airtable Fields node.\n\n## 3. Enter the table id of the following tables into the Set Airtable Fields node.\n- Master All KW Variations\n- Keyword Categories\n- Content Ideas for Keywords\n- Clusters\n- Content Ideas from Clusters\n\nThe table id is after the base id. For example.\nhttps://airtable.com/apphzhR0wI16xjJJs/tblD8sMi6W4EikkN4/viw8DZMvccWGY7YuO?blocks=hide\n\ntblD8sMi6W4EikkN4 is the table id.\n\n## 4. Test your automation\nSelect Test Workflow."
},
"typeVersion": 1
},
{
"id": "dc5a6cac-b54a-407d-bac3-20179d26d0b1",
"name": "Felder für Airtable setzen",
"type": "n8n-nodes-base.set",
"position": [
-736,
864
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "99f5e2d5-6280-4a72-b012-1c67f650cf61",
"name": "airtable_base_id",
"type": "string",
"value": "apprrQ0Dv1cJOfMi9"
},
{
"id": "e858bffe-72b3-4a26-80db-c4cfc39215c0",
"name": "categories_table_id",
"type": "string",
"value": "tblD8sMi6W4EikkN4"
},
{
"id": "753f86c8-f0fd-4207-87f4-315860219035",
"name": "content_ideas_from_kws_table_id",
"type": "string",
"value": "tblRDR7uE4b73ZpRt"
},
{
"id": "0b487ade-b243-42fd-884c-5dae08f6cd84",
"name": "clusters_table_id",
"type": "string",
"value": "tblDRGVjI1vPuJxvm"
},
{
"id": "0ff536ed-aba0-4d47-bc6f-c42c39f6874d",
"name": "content_ideas_from_clusters_table_id",
"type": "string",
"value": "tbl7trYCu9sSGdRTJ"
},
{
"id": "5bb24a3e-a434-4817-9041-b39bbe09c60b",
"name": "master_all_kw_variations_table_id",
"type": "string",
"value": "tblHz4bwclrB24afu"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "1c60d9bc-9939-4099-b8fb-4645bc483c1e",
"name": "Airtable Alle Keywords abrufen",
"type": "n8n-nodes-base.airtable",
"position": [
-480,
864
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": "={{ $json.airtable_base_id }}"
},
"table": {
"__rl": true,
"mode": "id",
"value": "={{ $json.master_all_kw_variations_table_id }}"
},
"options": {},
"operation": "search"
},
"credentials": {
"airtableTokenApi": {
"id": "IdMuG6Ja3xc0kVnw",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "ea3c624b-7f7e-43f8-993b-c5ef14bd7b58",
"name": "Cluster-Ideen-Tabelle",
"type": "n8n-nodes-base.airtable",
"position": [
2240,
1504
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.airtable_base_id }}"
},
"table": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.content_ideas_from_clusters_table_id }}"
},
"columns": {
"value": {
"Type": "={{ $json.type }}",
"Title": "={{ $json.title }}",
"Status": "Not Started",
"Keyword": "={{ $json.keyword }}",
"Reasoning": "={{ $json.reasoning }}",
"Description": "={{ $json.description }}",
"Cluster Name": "={{ $json.cluster_name }}",
"Primary Keyword": "={{ $('Set WF Fields').first().json.primary_keyword }}"
},
"schema": [
{
"id": "Cluster Name",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Cluster Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Title",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Description",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Description",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Type",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Type",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reasoning",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Reasoning",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Status",
"type": "options",
"display": true,
"options": [
{
"name": "Not Started",
"value": "Not Started"
},
{
"name": "Send to Article Writer",
"value": "Send to Article Writer"
},
{
"name": "Complete",
"value": "Complete"
},
{
"name": "Delete",
"value": "Delete"
}
],
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Status",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Primary Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Primary Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "IdMuG6Ja3xc0kVnw",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "86727db5-c668-4831-b931-9db4257dbe0d",
"name": "Cluster-Tabelle",
"type": "n8n-nodes-base.airtable",
"position": [
1872,
1168
],
"parameters": {
"base": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.airtable_base_id }}"
},
"table": {
"__rl": true,
"mode": "id",
"value": "={{ $('Set Airtable Fields').item.json.clusters_table_id }}"
},
"columns": {
"value": {
"Intent": "={{ $('Set Fields for Airtable').item.json.intent_pattern }}",
"Keywords": "={{ $json.keywords }}",
"Reasoning": "={{ $('Set Fields for Airtable').item.json.reasoning }}",
"Core Topic": "={{ $('Set Fields for Airtable').item.json.core_topic }}",
"Cluster Name": "={{ $('Set Fields for Airtable').item.json.cluster_name }}",
"Primary Keyword": "={{ $('Set Fields for Airtable').item.json.primary_keyword }}"
},
"schema": [
{
"id": "Cluster Name",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Cluster Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Core Topic",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Core Topic",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Intent",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Keywords",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Keywords",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Reasoning",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Reasoning",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Primary Keyword",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "Primary Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "IdMuG6Ja3xc0kVnw",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "bc47eb5d-709d-4ef4-aa70-d9553fcfc578",
"name": "OpenAI Chat-Modell1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
192,
544
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "chatgpt-4o-latest",
"cachedResultName": "chatgpt-4o-latest"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "O3hYHprN7nmmN09U",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "9785f9fe-920b-44ac-b2a8-deee787f953a",
"name": "OpenAI Chat-Modell2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1584,
816
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "chatgpt-4o-latest",
"cachedResultName": "chatgpt-4o-latest"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "O3hYHprN7nmmN09U",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "7c885336-254e-4bf5-883b-6fb1946969fe",
"name": "OpenAI Chat-Modell3",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
480,
1392
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "chatgpt-4o-latest",
"cachedResultName": "chatgpt-4o-latest"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "O3hYHprN7nmmN09U",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "51265be4-2b2e-4739-a559-5a1c963e242c",
"connections": {
"d1dfbd10-6e9c-4b1c-821b-fa229d17ef18": {
"main": [
[
{
"node": "dc5a6cac-b54a-407d-bac3-20179d26d0b1",
"type": "main",
"index": 0
}
]
]
},
"3825f2ca-0ecf-40ce-9a39-971ddd242a39": {
"main": [
[
{
"node": "86727db5-c668-4831-b931-9db4257dbe0d",
"type": "main",
"index": 0
}
]
]
},
"d540d82a-ebb4-4876-82c3-321cc9675d6c": {
"main": [
[
{
"node": "4d98bb25-96b6-4e2c-8e1d-1b9929259ea5",
"type": "main",
"index": 0
}
]
]
},
"98ae124b-2a5d-4f9b-8f87-5255a94fd622": {
"main": [
[
{
"node": "ea3c624b-7f7e-43f8-993b-c5ef14bd7b58",
"type": "main",
"index": 0
}
]
]
},
"a999e95d-8118-4fad-b5e1-9bea18160b54": {
"main": [
[
{
"node": "d1dfbd10-6e9c-4b1c-821b-fa229d17ef18",
"type": "main",
"index": 0
}
]
]
},
"5ca9e9cf-5782-4ef9-8c6c-764b9397f6ed": {
"main": [
[
{
"node": "d540d82a-ebb4-4876-82c3-321cc9675d6c",
"type": "main",
"index": 0
}
]
]
},
"85f81a82-e602-463e-b0c8-8904d6c792a1": {
"main": [
[
{
"node": "98ae124b-2a5d-4f9b-8f87-5255a94fd622",
"type": "main",
"index": 0
}
]
]
},
"ccf02d2e-596b-47fa-bea5-9f5ba666c054": {
"main": [
[
{
"node": "fb434fe3-29dc-4187-a191-69bdc9f98bc7",
"type": "main",
"index": 0
},
{
"node": "852c9c71-f2bd-4aa6-abed-5f6a4aee633d",
"type": "main",
"index": 0
}
]
]
},
"43bb97fe-3742-4f59-a010-6f62e78015f7": {
"main": [
[
{
"node": "85391b1c-4813-4466-a710-4055f8788421",
"type": "main",
"index": 0
}
]
]
},
"e91fe6b8-6c95-4d2a-b4f2-576f33cff58b": {
"main": [
[],
[
{
"node": "61240f06-f973-49de-9327-08130f0a3b39",
"type": "main",
"index": 0
}
]
]
},
"852c9c71-f2bd-4aa6-abed-5f6a4aee633d": {
"main": [
[
{
"node": "7ad32cab-aa16-4f85-ac97-9b4c395ef649",
"type": "main",
"index": 0
}
]
]
},
"5491d95a-f718-4090-b806-6a1d4f41ee2c": {
"ai_languageModel": [
[
{
"node": "4d98bb25-96b6-4e2c-8e1d-1b9929259ea5",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"85391b1c-4813-4466-a710-4055f8788421": {
"main": [
[
{
"node": "e20decb0-fd75-4cd4-8b4c-3143d2dd9217",
"type": "main",
"index": 0
}
]
]
},
"bc47eb5d-709d-4ef4-aa70-d9553fcfc578": {
"ai_languageModel": [
[
{
"node": "852c9c71-f2bd-4aa6-abed-5f6a4aee633d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"9785f9fe-920b-44ac-b2a8-deee787f953a": {
"ai_languageModel": [
[
{
"node": "61240f06-f973-49de-9327-08130f0a3b39",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"7c885336-254e-4bf5-883b-6fb1946969fe": {
"ai_languageModel": [
[
{
"node": "d769b8bb-16ad-4dac-9d87-22c942e3e6ff",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"dc5a6cac-b54a-407d-bac3-20179d26d0b1": {
"main": [
[
{
"node": "3825f2ca-0ecf-40ce-9a39-971ddd242a39",
"type": "main",
"index": 0
}
]
]
},
"0c9465e0-cae0-408f-b958-641528b703dc": {
"main": [
[
{
"node": "d769b8bb-16ad-4dac-9d87-22c942e3e6ff",
"type": "main",
"index": 0
}
]
]
},
"1c60d9bc-9939-4099-b8fb-4645bc483c1e": {
"main": [
[
{
"node": "ccf02d2e-596b-47fa-bea5-9f5ba666c054",
"type": "main",
"index": 0
}
]
]
},
"4d98bb25-96b6-4e2c-8e1d-1b9929259ea5": {
"main": [
[
{
"node": "85f81a82-e602-463e-b0c8-8904d6c792a1",
"type": "main",
"index": 0
}
]
]
},
"7ad32cab-aa16-4f85-ac97-9b4c395ef649": {
"main": [
[
{
"node": "43bb97fe-3742-4f59-a010-6f62e78015f7",
"type": "main",
"index": 0
}
]
]
},
"fb434fe3-29dc-4187-a191-69bdc9f98bc7": {
"main": [
[
{
"node": "0c9465e0-cae0-408f-b958-641528b703dc",
"type": "main",
"index": 0
}
]
]
},
"9eb70197-dc70-4696-8c0f-3175200d2bc3": {
"main": [
[
{
"node": "27cbaea3-5b5d-4c2c-b687-3f0784aec8a7",
"type": "main",
"index": 0
}
]
]
},
"27cbaea3-5b5d-4c2c-b687-3f0784aec8a7": {
"main": [
[
{
"node": "e91fe6b8-6c95-4d2a-b4f2-576f33cff58b",
"type": "main",
"index": 0
}
]
]
},
"d769b8bb-16ad-4dac-9d87-22c942e3e6ff": {
"main": [
[
{
"node": "a999e95d-8118-4fad-b5e1-9bea18160b54",
"type": "main",
"index": 0
},
{
"node": "5ca9e9cf-5782-4ef9-8c6c-764b9397f6ed",
"type": "main",
"index": 0
}
]
]
},
"e20decb0-fd75-4cd4-8b4c-3143d2dd9217": {
"main": [
[
{
"node": "e91fe6b8-6c95-4d2a-b4f2-576f33cff58b",
"type": "main",
"index": 0
}
]
]
},
"478452bb-0bf2-46c0-8644-d4f9bd2e31c7": {
"main": [
[
{
"node": "dc5a6cac-b54a-407d-bac3-20179d26d0b1",
"type": "main",
"index": 0
}
]
]
},
"61240f06-f973-49de-9327-08130f0a3b39": {
"main": [
[
{
"node": "9eb70197-dc70-4696-8c0f-3175200d2bc3",
"type": "main",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Experte
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
InhaltGenerator v3
If
Set
Code
+
If
Set
Code
144 NodesJay Emp0
Content-Erstellung
YNAB automatisches Budget
Verwendung von GPT-5-Mini zur automatischen Klassifizierung von YNAB-Transaktionen und Versand von Discord-Benachrichtigungen
If
Set
Merge
+
If
Set
Merge
29 Nodesspencer owen
KI-Zusammenfassung
Automatisierung der Sprint-Planung für agile Teams
Automatisierung des Sprint-Planings für agile Teams mit OpenAI, Google Kalender und Gmail
If
Set
Code
+
If
Set
Code
52 NodesWillemijn
Produkt
n8n-Knoten in der visuellen Referenzbibliothek erkunden
Erkundung von n8n-Knoten in der visuellen Referenzbibliothek
If
Ftp
Set
+
If
Ftp
Set
113 NodesI versus AI
Sonstiges
AI-Powered Lead Enrichment with Bright Data MCP and Google Sheets
If
Set
Wait
+
If
Set
Wait
51 NodesCyril Nicko Gaspar
Vertrieb
Freelancer.com-Automatischer Bewerber (mit Telegram-Besapproval und AI-Vorschlägen)
Freelancer.com-Automatischer Auktionsbote mit Telegram- genehmigung und KI-Antragsgenerierung
If
Set
Split Out
+
If
Set
Split Out
26 NodesMohamed Abdelwahab
Lead-Pflege
Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes40
Kategorie-
Node-Typen10
Autor
Gloria
@gloriaExterne Links
Auf n8n.io ansehen →
Diesen Workflow teilen