Skalierbare Nachrichtenaufbereitung für natürliche KI-Unterhaltungen in n8n
Experte
Dies ist ein Miscellaneous, AI Chatbot, Multimodal AI-Bereich Automatisierungsworkflow mit 24 Nodes. Hauptsächlich werden If, Wait, Redis, Agent, ChatTrigger und andere Nodes verwendet. Intelligente Nachrichtenpufferung für AI-Chats mit Redis und GPT-4-mini
Voraussetzungen
- •Redis-Serververbindungsdaten
- •OpenAI API Key
Verwendete Nodes (24)
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"id": "AwApYNYyap3QWQCh",
"meta": {
"instanceId": "34b0d0e99edc6fd6ff56c1433b02b593911416243044265caed0be2f3275a537"
},
"name": "Implementing a Scalable Message Buffer for Natural AI Conversations in n8n",
"tags": [],
"nodes": [
{
"id": "2f166c61-c613-46ef-9d58-d24873c6a477",
"name": "Notizzettel",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1408,
-64
],
"parameters": {
"color": 5,
"width": 380,
"height": 724,
"content": "## 🚀 Welcome to the Scalable Chat Buffer Workflow!\n\nThis workflow solves a common problem in AI chat implementations: handling multiple rapid messages from users naturally.\n\n### 🎯 What it does:\n- **Buffers** rapid messages from users (like when someone types multiple lines quickly)\n- **Aggregates** them into a single context\n- **Processes** everything together for more natural AI responses\n- **Scales** efficiently for multiple concurrent users\n\n### 📋 Prerequisites:\n1. **Redis** connection configured\n2. **OpenAI API** key (or other LLM provider)\n3. **n8n version** 1.0.0 or higher\n\n### ⚙️ Configuration:\n1. Set up your Redis credentials\n2. Configure your LLM provider\n3. Adjust the buffer timing (default: 15 seconds)\n4. Deploy and test!\n\n### 💡 Key Innovation:\nUnlike traditional approaches, only the FIRST message in a sequence waits. Subsequent messages skip the queue, eliminating bottlenecks!"
},
"typeVersion": 1
},
{
"id": "d09b934e-a97b-4e33-a34e-85044c7ab8ae",
"name": "Notizzettel 1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1008,
528
],
"parameters": {
"width": 280,
"height": 352,
"content": "## 📥 Message Entry Point\n\nThe **Chat Trigger** receives all incoming messages from users.\n\n**Session ID** is crucial - it ensures each user's messages are handled separately, enabling true parallel processing.\n\nDespite we are using the traditional chat trigger, this workflow will perform better using other chat triggers like Telegram and WhatsApp."
},
"typeVersion": 1
},
{
"id": "983f720c-dde7-4ba1-847f-f10524aa4018",
"name": "Notizzettel 2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-752,
80
],
"parameters": {
"color": 2,
"width": 280,
"height": 260,
"content": "## 🗄️ Message Queue Insertion\n\nEach message is **pushed to a Redis list** specific to the user's session.\n\n**Key pattern**: `chat_{{sessionId}}`\n\nThis creates isolated message queues per conversation, preventing cross-talk between users."
},
"typeVersion": 1
},
{
"id": "f38bceca-c322-4b22-9033-c9f48052510b",
"name": "Notizzettel 3",
"type": "n8n-nodes-base.stickyNote",
"position": [
128,
-112
],
"parameters": {
"color": 4,
"width": 320,
"height": 372,
"content": "## ⏰ Smart Waiting Logic\n\nThis is where the **magic happens**!\n\n**First message** in a burst:\n- Sets a timestamp\n- Enters a 15-second wait period\n- Allows time for additional messages\n\n**Subsequent messages**:\n- Skip the wait if within 15 seconds\n- Get added to the buffer immediately\n- No additional delays!\n\nThis eliminates the bottleneck that affects other buffer implementations."
},
"typeVersion": 1
},
{
"id": "fe0c902c-995b-41ae-b322-9cf1d4dd844b",
"name": "Notizzettel 4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
-96
],
"parameters": {
"color": 3,
"width": 320,
"height": 348,
"content": "## 🔄 Message Extraction & Context Building\n\nAfter the buffer period:\n1. **Extract** all messages from the Redis queue\n2. **Retrieve** any partial context from previous extraction\n3. **Concatenate** messages into a single context\n4. **Store** the combined message temporarily\n\nThis ensures all fragmented user thoughts are assembled before AI processing."
},
"typeVersion": 1
},
{
"id": "df0d2487-ee4d-432d-8877-bcdf869eb28a",
"name": "Notizzettel 5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1648,
-80
],
"parameters": {
"color": 6,
"width": 320,
"height": 336,
"content": "## 🤖 AI Agent Processing\n\nThe **AI Agent** receives the complete buffered message context:\n\n- Processes all user messages as one coherent input\n- Maintains conversation memory via Redis\n- Responds once with full understanding\n- Creates natural, human-like interactions\n\n**Result**: Instead of multiple fragmented responses, users get one thoughtful reply!"
},
"typeVersion": 1
},
{
"id": "89b74088-597b-45d0-9bc2-de9f70647221",
"name": "Verzögerung prüfen",
"type": "n8n-nodes-base.if",
"position": [
576,
272
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "32ce777d-b762-4635-9618-c772bac2337b",
"operator": {
"type": "number",
"operation": "lt"
},
"leftValue": "={{ $json.timestamp.toNumber() + 15 }}",
"rightValue": "={{ $now.toSeconds() }}"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "e39363aa-5a75-4666-b8bf-0e2b4eb4df91",
"name": "Erste Nachricht prüfen",
"type": "n8n-nodes-base.if",
"position": [
-320,
368
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "de69235c-bae4-4140-b47f-aff3a24b4be6",
"operator": {
"type": "number",
"operation": "equals"
},
"leftValue": "={{ $json.values()[0] }}",
"rightValue": 1
}
]
}
},
"typeVersion": 2.2
},
{
"id": "1f0a5bf6-2a3e-422c-8210-aad82f9c867e",
"name": "Zeitstempel abrufen",
"type": "n8n-nodes-base.redis",
"position": [
352,
272
],
"parameters": {
"key": "=timestamp_{{ $('chat').first().json.sessionId }}",
"keyType": "string",
"options": {},
"operation": "get",
"propertyName": "timestamp"
},
"typeVersion": 1
},
{
"id": "c7e250c9-98bf-45b6-9e50-c9567ff0b691",
"name": "Zeitstempel",
"type": "n8n-nodes-base.redis",
"position": [
-96,
272
],
"parameters": {
"key": "=timestamp_{{ $('chat').first().json.sessionId }}",
"ttl": 25,
"value": "={{ $now.toSeconds() }}",
"expire": true,
"keyType": "string",
"operation": "set"
},
"typeVersion": 1
},
{
"id": "9bf0ef1e-1d0d-499d-bcfb-05fd72be84a2",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1696,
496
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4-mini"
},
"options": {
"topP": 1,
"temperature": 0.8,
"frequencyPenalty": 0.8
}
},
"typeVersion": 1.2
},
{
"id": "a4f025ec-398c-491f-b260-20b2a0c25f9c",
"name": "nichts",
"type": "n8n-nodes-base.noOp",
"position": [
-96,
464
],
"parameters": {},
"typeVersion": 1
},
{
"id": "73504fdd-3fe1-453f-a6f4-16cf4cc8c775",
"name": "KI-Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1696,
272
],
"parameters": {
"text": "={{ $json.message }}",
"options": {
"systemMessage": "You are a helpful AI assistant. Respond naturally to the complete context of what the user is saying."
},
"promptType": "define"
},
"typeVersion": 2,
"alwaysOutputData": true
},
{
"id": "8d0fe1a5-0617-45cb-b254-c2d500d24526",
"name": "redis_chat_memory",
"type": "@n8n/n8n-nodes-langchain.memoryRedisChat",
"position": [
1824,
496
],
"parameters": {
"sessionKey": "=memory_{{ $('chat').first().json.sessionId }}",
"sessionTTL": 7200,
"sessionIdType": "customKey"
},
"typeVersion": 1.5
},
{
"id": "790ddc78-a3c7-4b31-ad1d-af6ca2ee978a",
"name": "Chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-992,
368
],
"webhookId": "chat-buffer-webhook",
"parameters": {
"options": {}
},
"typeVersion": 1.3
},
{
"id": "ddbf7ea0-ed49-4c6b-a7bc-2a2cacfb043d",
"name": "Speichern",
"type": "n8n-nodes-base.redis",
"position": [
-768,
368
],
"parameters": {
"list": "=chat_{{ $json.sessionId }}",
"operation": "push",
"messageData": "={{ $json.chatInput }}"
},
"typeVersion": 1
},
{
"id": "4c9a61a7-ec30-4ffc-ba1e-670fd2f0f0c2",
"name": "Zählen",
"type": "n8n-nodes-base.redis",
"position": [
-544,
368
],
"parameters": {
"key": "=counter_{{ $json.sessionId }}",
"ttl": 25,
"expire": true,
"operation": "incr"
},
"typeVersion": 1
},
{
"id": "42ca5892-fc88-4f91-9810-6997209f64e3",
"name": "Extrahieren",
"type": "n8n-nodes-base.redis",
"position": [
800,
272
],
"parameters": {
"list": "=chat_{{ $('chat').first().json.sessionId }}",
"tail": true,
"options": {},
"operation": "pop",
"propertyName": "text"
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "9285cfa5-5c37-4a43-bccb-37a5eb1d2027",
"name": "Warten",
"type": "n8n-nodes-base.wait",
"position": [
128,
272
],
"webhookId": "wait-webhook",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "b75f167e-b117-4b90-9746-a24fc88763f4",
"name": "Nachricht abrufen",
"type": "n8n-nodes-base.redis",
"position": [
1024,
272
],
"parameters": {
"key": "=message_{{ $('chat').first().json.sessionId }}",
"keyType": "string",
"options": {},
"operation": "get",
"propertyName": "message"
},
"typeVersion": 1
},
{
"id": "7f405702-5983-431a-96fe-b04524c04ae4",
"name": "Nachricht setzen",
"type": "n8n-nodes-base.redis",
"position": [
1248,
272
],
"parameters": {
"key": "=message_{{ $('chat').first().json.sessionId }}",
"ttl": 5,
"value": "={{ $json.message ? $json.message : \"\" }}{{ $('extract').first().json.text }}\n",
"expire": true,
"keyType": "string",
"operation": "set"
},
"typeVersion": 1
},
{
"id": "403218e5-4032-4947-b8ca-c336a88fbb4d",
"name": "Warteschlange leer prüfen",
"type": "n8n-nodes-base.if",
"position": [
1472,
272
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "db8d3308-4158-423c-817e-b55786bc13ca",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $('extract').first().json.text }}",
"rightValue": "={{ $json.values()[0] }}"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "250117dc-ae26-4ea2-b782-a581ad2b8790",
"name": "Notizzettel 6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-416,
592
],
"parameters": {
"color": 7,
"width": 328,
"height": 312,
"content": "## 🔍 Critical Decision Points\n\nThese **IF nodes** control the flow:\n\n1. **check_first_message**: Is this the first message from this session?\n2. **check_delay**: Has the buffer period expired?\n3. **check_queue_is_empty**: Are there messages ready to process?\n\nThese decisions ensure efficient, scalable message handling."
},
"typeVersion": 1
},
{
"id": "022aa490-78eb-4ad3-ad61-7ce621541443",
"name": "Notizzettel 7",
"type": "n8n-nodes-base.stickyNote",
"position": [
2080,
48
],
"parameters": {
"color": 5,
"width": 320,
"height": 372,
"content": "## ⚡ Performance Tips\n\n**Customization Options:**\n- **Buffer Time**: Adjust from 15s (line in check_delay)\n- **TTL Values**: Modify Redis key expiration times\n- **LLM Settings**: Tune temperature and frequency penalty\n- **System Message**: Customize AI behavior\n\n**Scaling Considerations:**\n- Each session runs independently\n- Redis handles thousands of concurrent sessions\n- No shared bottlenecks between users"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "aa753eee-4ff4-448c-8696-cd277fe2301f",
"connections": {
"790ddc78-a3c7-4b31-ad1d-af6ca2ee978a": {
"main": [
[
{
"node": "ddbf7ea0-ed49-4c6b-a7bc-2a2cacfb043d",
"type": "main",
"index": 0
}
]
]
},
"9285cfa5-5c37-4a43-bccb-37a5eb1d2027": {
"main": [
[
{
"node": "1f0a5bf6-2a3e-422c-8210-aad82f9c867e",
"type": "main",
"index": 0
}
]
]
},
"4c9a61a7-ec30-4ffc-ba1e-670fd2f0f0c2": {
"main": [
[
{
"node": "e39363aa-5a75-4666-b8bf-0e2b4eb4df91",
"type": "main",
"index": 0
}
]
]
},
"ddbf7ea0-ed49-4c6b-a7bc-2a2cacfb043d": {
"main": [
[
{
"node": "4c9a61a7-ec30-4ffc-ba1e-670fd2f0f0c2",
"type": "main",
"index": 0
}
]
]
},
"42ca5892-fc88-4f91-9810-6997209f64e3": {
"main": [
[
{
"node": "b75f167e-b117-4b90-9746-a24fc88763f4",
"type": "main",
"index": 0
}
]
]
},
"c7e250c9-98bf-45b6-9e50-c9567ff0b691": {
"main": [
[
{
"node": "9285cfa5-5c37-4a43-bccb-37a5eb1d2027",
"type": "main",
"index": 0
}
]
]
},
"89b74088-597b-45d0-9bc2-de9f70647221": {
"main": [
[
{
"node": "42ca5892-fc88-4f91-9810-6997209f64e3",
"type": "main",
"index": 0
}
],
[
{
"node": "9285cfa5-5c37-4a43-bccb-37a5eb1d2027",
"type": "main",
"index": 0
}
]
]
},
"b75f167e-b117-4b90-9746-a24fc88763f4": {
"main": [
[
{
"node": "7f405702-5983-431a-96fe-b04524c04ae4",
"type": "main",
"index": 0
}
]
]
},
"7f405702-5983-431a-96fe-b04524c04ae4": {
"main": [
[
{
"node": "403218e5-4032-4947-b8ca-c336a88fbb4d",
"type": "main",
"index": 0
}
]
]
},
"1f0a5bf6-2a3e-422c-8210-aad82f9c867e": {
"main": [
[
{
"node": "89b74088-597b-45d0-9bc2-de9f70647221",
"type": "main",
"index": 0
}
]
]
},
"9bf0ef1e-1d0d-499d-bcfb-05fd72be84a2": {
"ai_languageModel": [
[
{
"node": "73504fdd-3fe1-453f-a6f4-16cf4cc8c775",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"8d0fe1a5-0617-45cb-b254-c2d500d24526": {
"ai_memory": [
[
{
"node": "73504fdd-3fe1-453f-a6f4-16cf4cc8c775",
"type": "ai_memory",
"index": 0
}
]
]
},
"e39363aa-5a75-4666-b8bf-0e2b4eb4df91": {
"main": [
[
{
"node": "c7e250c9-98bf-45b6-9e50-c9567ff0b691",
"type": "main",
"index": 0
}
],
[
{
"node": "a4f025ec-398c-491f-b260-20b2a0c25f9c",
"type": "main",
"index": 0
}
]
]
},
"403218e5-4032-4947-b8ca-c336a88fbb4d": {
"main": [
[
{
"node": "73504fdd-3fe1-453f-a6f4-16cf4cc8c775",
"type": "main",
"index": 0
}
],
[
{
"node": "42ca5892-fc88-4f91-9810-6997209f64e3",
"type": "main",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Experte - Verschiedenes, KI-Chatbot, Multimodales KI
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
5 AI-Chat zur Automatisierung von Instagram-Karussell-Diagrammen
Soziale Medien-Karussel-Grafiken auf 5 Plattformen mit AI und Blotato erstellen und veröffentlichen
If
Wait
Merge
+
If
Wait
Merge
29 NodesSabrina Ramonov 🍄
Verschiedenes
Generierung von kreativen Lösungen mit Doppel-KI-Agenten, Randomisierung und Redis
Generierung kreativer Lösungen durch doppelte KI-Agenten, Randomisierung und Redis
If
Set
Code
+
If
Set
Code
25 NodesEinar César Santos
Marktforschung
PDF zu Auftrag
KI-gesteuerte Automatisierung der Umwandlung von PDF-Bestellaufträgen in Adobe Commerce-Aufträge
If
Set
Code
+
If
Set
Code
96 NodesJKingma
Dokumentenextraktion
Automatisierung von WhatsApp-Antworten in Go High Level mit Redis und Anthropic
Automatisierte WhatsApp-Antworten mit Go High Level, Redis und Anthropic
If
Set
Code
+
If
Set
Code
31 NodesJorge Martínez
KI-Chatbot
🚀 KI-gestützte WhatsApp-Kundensupport für Shopify-Marken
KI-gestiützer WhatsApp-Kundensupport für Shopify-Marken (LLM-Agent)
Set
Slack
Switch
+
Set
Slack
Switch
30 NodesRuthwik
Verschiedenes
Immobiliensucher-Spider-Assistent
Immobilienfragen mit PropertyFinder.ae, OpenRouter und SerpAPI über KI beantworten
If
Set
Code
+
If
Set
Code
18 NodesGeorge Zargaryan
Verschiedenes
Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes24
Kategorie3
Node-Typen9
Autor
Einar César Santos
@einarcesarExterne Links
Auf n8n.io ansehen →
Diesen Workflow teilen