Generierung von Forschungsfragen und KI-Prompts aus PDF-Dokumenten basierend auf Wissenslücken
Dies ist ein Document Extraction, AI RAG-Bereich Automatisierungsworkflow mit 15 Nodes. Hauptsächlich werden Code, Form, FormTrigger, HttpRequest, ExtractFromFile und andere Nodes verwendet. Forschungsfragen aus PDFs mit InfraNodus-Inhaltsleerstellenanalyse generieren
- •Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
Verwendete Nodes (15)
Kategorie
{
"id": "oOxhkss1gOyLvJyf",
"meta": {
"instanceId": "2a26454b0172ffcb8d70ba77c235b1209f92cd71bf06c79ba609c7173b416d68",
"templateCredsSetupCompleted": true
},
"name": "Generate Research Questions and AI Prompts from PDF Documents based on Content Gaps",
"tags": [
{
"id": "66wgFoDi9Xjl74M3",
"name": "Support",
"createdAt": "2025-05-21T17:06:32.355Z",
"updatedAt": "2025-05-21T17:06:32.355Z"
},
{
"id": "kRM0hQV2zw7VxrON",
"name": "Research",
"createdAt": "2025-05-21T19:44:19.136Z",
"updatedAt": "2025-05-21T19:44:19.136Z"
},
{
"id": "sJk9cUvmMU8FkJXv",
"name": "AI",
"createdAt": "2025-05-20T13:16:15.636Z",
"updatedAt": "2025-05-20T13:16:15.636Z"
}
],
"nodes": [
{
"id": "a2339bb9-abb9-41bf-8064-8c3af94df039",
"name": "Convert File to PDF",
"type": "n8n-nodes-base.httpRequest",
"disabled": true,
"position": [
1880,
180
],
"parameters": {
"url": "https://v2.convertapi.com/convert/pdf/to/txt",
"method": "POST",
"options": {
"response": {
"response": {
"responseFormat": "text"
}
}
},
"sendBody": true,
"contentType": "multipart-form-data",
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "file",
"parameterType": "formBinaryData",
"inputDataFieldName": "data"
}
]
},
"genericAuthType": "httpBearerAuth",
"headerParameters": {
"parameters": [
{
"name": "Accept",
"value": "application/octet-stream"
}
]
}
},
"credentials": {
"httpBearerAuth": {
"id": "9fXf9Np7XsCWgxhg",
"name": "Perplexity"
}
},
"notesInFlow": true,
"typeVersion": 4.2
},
{
"id": "989a0d6c-12a1-45d4-8b6b-206855177df7",
"name": "Haftnotiz5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1840,
-400
],
"parameters": {
"color": 2,
"width": 360,
"height": 820,
"content": "## Optional: Better PDF Conversion\n\n### Standard Map PDF to Text node will split your PDF files into very short chunks, which deteriorates retrieval. \n\nUse can use [ConvertAPI](https://convertapi.com?ref=4l54n) which is a high-quality convertor that will respect the layout of the original document and not cut the paragraphs into short chunks. \n\nHere is an HTTP node that makes a request to their API to convert the PDF into text. If you have a ConvertAPI account, you can replace the \"Extract Text from PDF\" node in Step 3 with this node. \n\nNote that you will need to map the text output from this node correctly in the Step 4 after.\n"
},
"typeVersion": 1
},
{
"id": "4d698efb-6b02-4e95-9a6f-dca8bc1fbea7",
"name": "On form submission",
"type": "n8n-nodes-base.formTrigger",
"position": [
-380,
-60
],
"webhookId": "f35f0686-fbcb-466c-a59e-48ee9d360024",
"parameters": {
"options": {
"appendAttribution": false
},
"formTitle": "Find Content Gaps in Your PDF Files",
"formFields": {
"values": [
{
"fieldType": "file",
"fieldLabel": "Add Your Files",
"acceptFileTypes": ".pdf"
}
]
},
"formDescription": "Upload the files you'd like to analyze and we will extract content gaps and interesting questions based on them."
},
"typeVersion": 2.2
},
{
"id": "5798ca71-eb05-4097-ace1-9457be450e21",
"name": "Convert binary files to PDF",
"type": "n8n-nodes-base.code",
"position": [
-60,
-60
],
"parameters": {
"jsCode": "let results = [];\n\nfor (let item of items) {\n if (item.binary) {\n // If there's binary data in the item, process each binary file\n for (let key in item.binary) {\n // Use the key as the file name\n let binaryKey = key.replace(/\\s/g, '_'); // Replace spaces with underscores for the key\n results.push({\n json: {\n fileName: binaryKey\n },\n binary: {\n [binaryKey]: item.binary[key] // Use the modified key for the binary data\n }\n });\n }\n }\n}\n\nreturn results;\n"
},
"typeVersion": 2
},
{
"id": "6770b616-db38-48a8-8063-f3f5639d0946",
"name": "Extract text from PDF files",
"type": "n8n-nodes-base.extractFromFile",
"position": [
280,
-60
],
"parameters": {
"options": {},
"operation": "pdf",
"binaryPropertyName": "={{ $json.fileName }}"
},
"typeVersion": 1
},
{
"id": "2e47ecb8-cb9e-434a-ae9e-aae2ddb5fb54",
"name": "Prepare for InfraNodus",
"type": "n8n-nodes-base.code",
"position": [
580,
-60
],
"parameters": {
"jsCode": "\nlet plainText = '' // we send plain text from all the PDFs to InfraNodus for analysis\n\nconst randomNum = Math.floor(Math.random() * 3); // replace this with a 0 if you'd like to address the biggest gap in the knowledge graph\n\nfor (let item of items) {\n plainText += item.json.text + '\\n\\n' \n}\n\n\nreturn {text: plainText, randomNum};"
},
"typeVersion": 2
},
{
"id": "422faf1e-1545-4e5e-98aa-75c51a06c863",
"name": "Display on the Form to the User",
"type": "n8n-nodes-base.form",
"position": [
1380,
-60
],
"webhookId": "091aab99-a4cf-40ec-b3bb-655d8e0b9a5c",
"parameters": {
"operation": "completion",
"respondWith": "showText",
"responseText": "=<br>\n<h3>{{ $json.aiAdvice[0].text }}</h3>\n<br>\n"
},
"typeVersion": 1
},
{
"id": "820a3e64-1108-4c41-88e2-90d98fbd548f",
"name": "Haftnotiz",
"type": "n8n-nodes-base.stickyNote",
"position": [
-420,
-400
],
"parameters": {
"height": 520,
"content": "## Step 1: User uploads the PDF files for analysis\n\n### You can expose this endpoint and make it publicly available via a URL to your organization."
},
"typeVersion": 1
},
{
"id": "8dc2769a-b797-42c4-b531-82ce7f866dac",
"name": "Haftnotiz1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-120,
-400
],
"parameters": {
"width": 280,
"height": 520,
"content": "## Step 2: Convert uploaded binaries into PDF files\n\n### We need to convert the binaries uploaded to the PDF files so we can extract text from them."
},
"typeVersion": 1
},
{
"id": "8f8cf47a-726c-4db8-9362-f68c94e75254",
"name": "Haftnotiz2",
"type": "n8n-nodes-base.stickyNote",
"position": [
220,
-400
],
"parameters": {
"width": 220,
"height": 520,
"content": "## Step 3: Extract plain text from PDF files\n\n### For better quality text extraction, you can use the optional [ConvertAPI](https://convertapi.com?ref=4l54n) node to the right, which respects the files' original formatting."
},
"typeVersion": 1
},
{
"id": "f8da708a-ab86-40d7-bef0-dea600e5a032",
"name": "Haftnotiz3",
"type": "n8n-nodes-base.stickyNote",
"position": [
520,
-400
],
"parameters": {
"width": 220,
"height": 520,
"content": "## Step 4: Combine extracted text into a text string\n\n### Prepare data for InfraNodus: combine all the extracted text into a text string and also tell InfraNodus the gap depth it should use when generating advice"
},
"typeVersion": 1
},
{
"id": "d63bb46c-5d0a-4fb9-8f9c-06a3aba63959",
"name": "Haftnotiz4",
"type": "n8n-nodes-base.stickyNote",
"position": [
820,
-400
],
"parameters": {
"width": 380,
"height": 820,
"content": "## Step 5: Use InfraNodus GraphRAG to build a knowledge graph, find the gap, and generate a research question based on it.\n\n### [InfraNodus](https://infranodus.com) builds a knowledge graph from all the texts, identifies the topical clusters that are least connected, and generates a research question that has a potential to bridge them in a new way.\n\n🚨 PROVIDE YOUR INFRANODUS API KEY HERE"
},
"typeVersion": 1
},
{
"id": "0eeaef66-b9f5-4589-b663-9a992913fe1e",
"name": "Haftnotiz6",
"type": "n8n-nodes-base.stickyNote",
"position": [
1280,
-400
],
"parameters": {
"width": 380,
"height": 820,
"content": "## Step 6: Show question / prompt to the user\n\n### Optionally, you can feed the response to your other n8n workflow or expose it via a webhook and show it in your own app using an iframe."
},
"typeVersion": 1
},
{
"id": "b82fefa5-5882-4ecf-8b68-f884b42411c9",
"name": "Haftnotiz7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-420,
180
],
"parameters": {
"color": 5,
"width": 1160,
"height": 1000,
"content": "# How does InfraNodus GraphRAG generate research questions?\n\n## [InfraNodus](https://infranodus.com) GraphRAG helps avoid generic responses and LLM bias through analyzing your text's structure. Here's how it works:\n\n### 1. It represents your text as a network of concepts and relations building a knowledge graph.\n\n### 2. It then identifies the clusters of cocnepts that are furthest apart from each other — they appear in the same context (your texts) but are not well connected.\n\n### 3. InfraNodus will then use the AI to generate a question / prompt that bridges this gap — touching upon relevant topics but connecting them in a new way.\n\n"
},
"typeVersion": 1
},
{
"id": "da7cf09a-d3f3-41d8-9ae4-4b4b1bcfc80f",
"name": "InfraNodus GraphRAG Question Generator",
"type": "n8n-nodes-base.httpRequest",
"position": [
960,
0
],
"parameters": {
"url": "=https://infranodus.com/api/v1/graphAndAdvice?doNotSave=true&optimize=develop&includeGraph=false&includeGraphSummary=true&gapDepth={{ $json.randomNum }}",
"method": "POST",
"options": {},
"sendBody": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "aiTopics",
"value": "true"
},
{
"name": "requestMode",
"value": "question"
},
{
"name": "text",
"value": "={{ $json.text }}"
}
]
},
"genericAuthType": "httpBearerAuth"
},
"credentials": {
"httpBearerAuth": {
"id": "FPDx6PA5CtzGEIQc",
"name": "InfraNodus DeeMeeTree API Key"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "abd96e27-8999-4490-9c4c-8eda846dfc3b",
"connections": {
"4d698efb-6b02-4e95-9a6f-dca8bc1fbea7": {
"main": [
[
{
"node": "5798ca71-eb05-4097-ace1-9457be450e21",
"type": "main",
"index": 0
}
]
]
},
"2e47ecb8-cb9e-434a-ae9e-aae2ddb5fb54": {
"main": [
[
{
"node": "da7cf09a-d3f3-41d8-9ae4-4b4b1bcfc80f",
"type": "main",
"index": 0
}
]
]
},
"5798ca71-eb05-4097-ace1-9457be450e21": {
"main": [
[
{
"node": "6770b616-db38-48a8-8063-f3f5639d0946",
"type": "main",
"index": 0
}
]
]
},
"6770b616-db38-48a8-8063-f3f5639d0946": {
"main": [
[
{
"node": "2e47ecb8-cb9e-434a-ae9e-aae2ddb5fb54",
"type": "main",
"index": 0
}
]
]
},
"da7cf09a-d3f3-41d8-9ae4-4b4b1bcfc80f": {
"main": [
[
{
"node": "422faf1e-1545-4e5e-98aa-75c51a06c863",
"type": "main",
"index": 0
}
]
]
}
}
}Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Fortgeschritten - Dokumentenextraktion, KI RAG
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
InfraNodus
@infranodusI'm Dmitry, the founder of InfraNodus — an AI text network analysis tool. I'm passionate about networks and data visualization and its ability to reveal what everyone else is missing and to highlight different perspectives. I'm sharing the n8n templates that make use of this unique capability of InfraNodus for multiple scenarios.
Diesen Workflow teilen