RAG 2.0 – Antwort-Architektur

Experte

Dies ist ein Building Blocks, AI-Bereich Automatisierungsworkflow mit 40 Nodes. Hauptsächlich werden Set, Switch, Summarize, Agent, RespondToWebhook und andere Nodes verwendet, kombiniert mit KI-Technologie für intelligente Automatisierung. Adaptive RAG (Google Gemini und Qdrant): kontextbewusste Query-Antwortung

Voraussetzungen
  • HTTP Webhook-Endpunkt (wird von n8n automatisch generiert)
  • Qdrant-Serververbindungsdaten
  • Google Gemini API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "uZtDG9wLeCBZbaoK",
  "meta": {
    "instanceId": "2848b874676d610ec8f8106a5acf41448278a62b14e4a776b42d6977aab508d7",
    "templateId": "3459"
  },
  "name": "RAG 2.0 - Answer Architecture",
  "tags": [],
  "nodes": [
    {
      "id": "856bd809-8f41-41af-8f72-a3828229c2a5",
      "name": "Abfrageklassifizierung",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Classify a query into one of four categories: Factual, Analytical, Opinion, or Contextual.\n        \nReturns:\nstr: Query category",
      "position": [
        420,
        340
      ],
      "parameters": {
        "text": "=Classify this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "You are an expert at classifying questions. \n\nClassify the given query into exactly one of these categories:\n- Factual: Queries seeking specific, verifiable information.\n- Analytical: Queries requiring comprehensive analysis or explanation.\n- Opinion: Queries about subjective matters or seeking diverse viewpoints.\n- Contextual: Queries that depend on user-specific context.\n\nReturn ONLY the category name, without any explanation or additional text."
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "cc2106fc-f1a8-45ef-b37b-ab981ac13466",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        780,
        380
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "Factual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "87f3b50c-9f32-4260-ac76-19c05b28d0b4",
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Factual"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Analytical",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "f8651b36-79fa-4be4-91fb-0e6d7deea18f",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Analytical"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Opinion",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "5dde06bc-5fe1-4dca-b6e2-6857c5e96d49",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Opinion"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "Contextual",
              "conditions": {
                "options": {
                  "version": 2,
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "bf97926d-7a0b-4e2f-aac0-a820f73344d8",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.output.trim() }}",
                    "rightValue": "Contextual"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {
          "fallbackOutput": 0
        }
      },
      "typeVersion": 3.2
    },
    {
      "id": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
      "name": "Faktische Strategie - Fokus auf Präzision",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for factual queries focusing on precision.",
      "position": [
        1180,
        -440
      ],
      "parameters": {
        "text": "=Enhance this factual query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at enhancing search queries.\n\nYour task is to reformulate the given factual query to make it more precise and specific for information retrieval. Focus on key entities and their relationships.\n\nProvide ONLY the enhanced query without any explanation."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "020d2201-9590-400d-b496-48c65801271c",
      "name": "Analytische Strategie - Umfassende Abdeckung",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for analytical queries focusing on comprehensive coverage.",
      "position": [
        1180,
        140
      ],
      "parameters": {
        "text": "=Generate sub-questions for this analytical query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at breaking down complex questions.\n\nGenerate sub-questions that explore different aspects of the main analytical query.\nThese sub-questions should cover the breadth of the topic and help retrieve comprehensive information.\n\nReturn a list of exactly 3 sub-questions, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "c35d1b95-68c8-4237-932d-4744f620760d",
      "name": "Meinungsbasierte Strategie - Vielfältige Perspektiven",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for opinion queries focusing on diverse perspectives.",
      "position": [
        1220,
        700
      ],
      "parameters": {
        "text": "=Identify different perspectives on: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at identifying different perspectives on a topic.\n\nFor the given query about opinions or viewpoints, identify different perspectives that people might have on this topic.\n\nReturn a list of exactly 3 different viewpoint angles, one per line."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "363a3fc3-112f-40df-891e-0a5aa3669245",
      "name": "Kontextuelle Strategie - Nutzerkontextintegration",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "notes": "Retrieval strategy for contextual queries integrating user context.",
      "position": [
        1180,
        1320
      ],
      "parameters": {
        "text": "=Infer the implied context in this query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "=You are an expert at understanding implied context in questions.\n\nFor the given query, infer what contextual information might be relevant or implied but not explicitly stated. Focus on what background would help answering this query.\n\nReturn a brief description of the implied context."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "45887701-5ea5-48b4-9b2b-40a80238ab0c",
      "name": "Chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        0,
        640
      ],
      "webhookId": "56f626b5-339e-48af-857f-1d4198fc8a4d",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "7f7df364-4829-4e29-be3d-d13a63f65b8f",
      "name": "Faktische Prompt und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        1640,
        -300
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing factual information. Answer the question based on the provided context. Focus on accuracy and precision. If the context doesn't contain the information needed, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "590d8667-69eb-4db2-b5be-714c602b319a",
      "name": "Kontextuelle Prompt und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        1640,
        1400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing contextually relevant information. Answer the question considering both the query and its context. Make connections between the query context and the information in the provided documents. If the context doesn't fully address the specific situation, acknowledge the limitations."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74",
      "name": "Meinungsbasierte Prompt und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        1620,
        820
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant discussing topics with multiple viewpoints. Based on the provided context, present different perspectives on the topic. Ensure fair representation of diverse opinions without showing bias. Acknowledge where the context presents limited viewpoints."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "c769a76a-fb26-46a1-a00d-825b689d5f7a",
      "name": "Analytische Prompt und Ausgabe",
      "type": "n8n-nodes-base.set",
      "position": [
        1620,
        220
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
              "name": "prompt",
              "type": "string",
              "value": "You are a helpful assistant providing analytical insights. Based on the provided context, offer a comprehensive analysis of the topic. Cover different aspects and perspectives in your explanation. If the context has gaps, acknowledge them while providing the best analysis possible."
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "fcd29f6b-17e8-442c-93f9-b93fbad7cd10",
      "name": "Gemini Klassifizierung",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        580,
        600
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-lite"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c0828ee3-f184-41f5-9a25-0f1059b03711",
      "name": "Gemini Faktisch",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1240,
        -240
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "98f9981d-ea8e-45cb-b91d-3c8d1fe33e25",
      "name": "Gemini Analytisch",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1240,
        340
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c85f270d-3224-4e60-9acf-91f173dfe377",
      "name": "Chat-Pufferspeicher Analytisch",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1400,
        340
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "c39ba907-7388-4152-965a-e28e626bc9b2",
      "name": "Chat-Pufferspeicher Faktisch",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1400,
        -240
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "52dcd9f0-e6b3-4d33-bc6f-621ef880178e",
      "name": "Gemini Meinungsbasiert",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1280,
        900
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "147a709a-4b46-4835-82cf-7d6b633acd4c",
      "name": "Chat-Pufferspeicher Meinungsbasiert",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1440,
        900
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "3cb6bf32-5937-49b9-acf7-d7d01dc2ddd1",
      "name": "Gemini Kontextuell",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1240,
        1500
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5916c4f1-4369-4d66-8553-2fff006b7e69",
      "name": "Chat-Pufferspeicher Kontextuell",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        1420,
        1500
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "d33377c2-6b98-4e4d-968f-f3085354ae50",
      "name": "Embeddings",
      "type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
      "notes": "{ $node[\"Embeddings\"].json.response }}",
      "position": [
        2400,
        600
      ],
      "parameters": {
        "modelName": "models/text-embedding-004"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "32d9a0c0-0889-4cb2-a088-8ee9cfecacd3",
      "name": "Notizzettel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1100,
        -600
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Factual Strategy\n**Retrieve precise facts and figures.**\n## Olgusal Strateji\n**Kesin gerçeklere ve rakamlara ulaşın.**"
      },
      "typeVersion": 1
    },
    {
      "id": "064a4729-717c-40c8-824a-508406610a13",
      "name": "Notizzettel1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1100,
        -40
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Analytical Strategy\n**Provide comprehensive coverage of a topics and exploring different aspects.**\n## Analitik Strateji\n**Bir konunun kapsamlı bir şekilde ele alınmasını ve farklı yönlerinin keşfedilmesini sağlar.**"
      },
      "typeVersion": 1
    },
    {
      "id": "9fd52a28-44bc-4dfd-bdb7-90987cc2f4fb",
      "name": "Notizzettel2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1100,
        520
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 520,
        "content": "## Opinion Strategy\n**Gather diverse viewpoints on a subjective issue.**\n## Görüş Stratejisi\n**Öznel bir konuda farklı bakış açıları toplayın.**"
      },
      "typeVersion": 1
    },
    {
      "id": "3797b21f-cc2a-4210-aa63-6d181d413c5e",
      "name": "Notizzettel3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1100,
        1100
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 540,
        "content": "## Contextual Strategy\n**Incorporate user-specific context to fine-tune the retrieval.**\n## Bağlamsal Strateji\n**Getirmeye ince ayar yapmak için kullanıcıya özgü bağlamı dahil edin.**"
      },
      "typeVersion": 1
    },
    {
      "id": "16fa1531-9fb9-4b12-961c-be12e20b2134",
      "name": "Kontext verketten",
      "type": "n8n-nodes-base.summarize",
      "position": [
        2900,
        380
      ],
      "parameters": {
        "options": {},
        "fieldsToSummarize": {
          "values": [
            {
              "field": "document.pageContent",
              "separateBy": "other",
              "aggregation": "concatenate",
              "customSeparator": "={{ \"\\n\\n---\\n\\n\" }}"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
      "name": "Dokumente aus Vektorspeicher abrufen",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        2140,
        380
      ],
      "parameters": {
        "mode": "load",
        "topK": 10,
        "prompt": "=Prompt\n{{ $json.prompt }}\n\nUser query: \n{{ $json.output }}",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "=vector_store_id"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "ivp7KsCQyRCs5owS",
          "name": "QdrantApi account"
        }
      },
      "executeOnce": false,
      "notesInFlow": false,
      "retryOnFail": false,
      "typeVersion": 1.1,
      "alwaysOutputData": false
    },
    {
      "id": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
      "name": "Prompt und Ausgabe setzen",
      "type": "n8n-nodes-base.set",
      "position": [
        1900,
        460
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "1d782243-0571-4845-b8fe-4c6c4b55379e",
              "name": "output",
              "type": "string",
              "value": "={{ $json.output }}"
            },
            {
              "id": "547091fb-367c-44d4-ac39-24d073da70e0",
              "name": "prompt",
              "type": "string",
              "value": "={{ $json.prompt }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "0c623ca1-da85-48a3-9d8b-90d97283a015",
      "name": "Gemini Antwort",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        3340,
        620
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "vGGCUG66DLA8zNyX",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "fab91e48-1c62-46a8-b9fc-39704f225274",
      "name": "Antwort",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        3120,
        380
      ],
      "parameters": {
        "text": "=User query: {{ $('Combined Fields').item.json.user_query }}",
        "options": {
          "systemMessage": "={{ $('Set Prompt and Output').item.json.prompt }}\n\nUse the following context (delimited by <ctx></ctx>) and the chat history to answer the user query.\n<ctx>\n{{ $json.concatenated_document_pageContent }}\n</ctx>"
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "d69f8d62-3064-40a8-b490-22772fbc38cd",
      "name": "Chat-Pufferspeicher",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        3500,
        620
      ],
      "parameters": {
        "sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "a399f8e6-fafd-4f73-a2de-894f1e3c4bec",
      "name": "Notizzettel4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1860,
        160
      ],
      "parameters": {
        "color": 7,
        "width": 820,
        "height": 580,
        "content": "## Perform adaptive retrieval\n**Find document considering both query and context.**\n## Uyarlanabilir RAG gerçekleştirin\n**Hem sorguyu hem de bağlamı dikkate alarak belge bulun.**"
      },
      "typeVersion": 1
    },
    {
      "id": "7f10fe70-1af8-47ad-a9b5-2850412c43f8",
      "name": "Notizzettel5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2760,
        160
      ],
      "parameters": {
        "color": 7,
        "width": 1060,
        "height": 580,
        "content": "## Reply to the user integrating retrieval context\n## Kullanıcıya RAG bağlamını entegre ederek yanıt verin"
      },
      "typeVersion": 1
    },
    {
      "id": "5cd0dd02-65f4-4351-aeae-c70ecf5f1d66",
      "name": "Antwort an Webhook",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        3540,
        400
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "4c56ef8f-8fce-4525-bb87-15df37e91cc4",
      "name": "Notizzettel6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        320,
        160
      ],
      "parameters": {
        "color": 7,
        "width": 700,
        "height": 580,
        "content": "## User query classification\n**Classify the query into one of four categories: Factual, Analytical, Opinion, or Contextual.**\n## Kullanıcı sorgu sınıflandırması\n**Sorguyu dört kategoriden birine sınıflandırın: Olgusal, Analitik, Görüş veya Bağlamsal.**\n"
      },
      "typeVersion": 1
    },
    {
      "id": "3ef73405-89de-4bed-9673-90e2c1f2e74b",
      "name": "Bei Ausführung durch anderen Workflow",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        0,
        340
      ],
      "parameters": {
        "workflowInputs": {
          "values": [
            {
              "name": "user_query"
            },
            {
              "name": "chat_memory_key"
            },
            {
              "name": "vector_store_id"
            }
          ]
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "0785714f-c45c-4eda-9937-c97e44c9a449",
      "name": "Kombinierte Felder",
      "type": "n8n-nodes-base.set",
      "position": [
        140,
        480
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "90ab73a2-fe01-451a-b9df-bffe950b1599",
              "name": "user_query",
              "type": "string",
              "value": "={{ $json.user_query || $json.chatInput }}"
            },
            {
              "id": "36686ff5-09fc-40a4-8335-a5dd1576e941",
              "name": "chat_memory_key",
              "type": "string",
              "value": "={{ $json.chat_memory_key || $('Chat').item.json.sessionId }}"
            },
            {
              "id": "4230c8f3-644c-4985-b710-a4099ccee77c",
              "name": "vector_store_id",
              "type": "string",
              "value": "={{ $json.vector_store_id || \"<ID HERE>\" }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "57a93b72-4233-4ba2-b8c7-99d88f0ed572",
      "name": "Notizzettel7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1420,
        -560
      ],
      "parameters": {
        "color": 3,
        "width": 1280,
        "height": 1680,
        "content": "# Uyarlanabilir RAG İş Akışı\n\nBu n8n iş akışı, Uyarlanabilir Geri Getirme Destekli Üretim (Adaptive RAG) yaklaşımının bir versiyonunu uygular. Kullanıcı sorgularını sınıflandırır ve sorgu türüne (Olgusal, Analitik, Görüş veya Bağlamsal) göre farklı geri getirme ve üretim stratejileri uygulayarak bir Qdrant vektör deposunda saklanan bilgi tabanından daha alakalı ve özel yanıtlar sunar.\n\n## Nasıl Çalışır?\n\n### Giriş Tetikleyicisi\n\n- İş akışı, yerleşik Sohbet arayüzü aracılığıyla veya başka bir n8n iş akışı tarafından tetiklenebilir.\n- Girdiler beklenir: `user_query` (kullanıcı sorgusu), `chat_memory_key` (konuşma geçmişi için) ve `vector_store_id` (Qdrant koleksiyonunu belirten).\n- Bir `Set` düğümü (`Combined Fields` - Birleştirilmiş Alanlar) bu girdileri standartlaştırır.\n\n### Sorgu Sınıflandırması\n\n- Bir Google Gemini ajanı (`Query Classification` - Sorgu Sınıflandırması) `user_query`'yi analiz eder.\n- Sorguyu dört kategoriden birine sınıflandırır:\n  - **Olgusal:** Belirli, doğrulanabilir bilgi arayan.\n  - **Analitik:** Kapsamlı analiz veya açıklama gerektiren.\n  - **Görüş:** Öznel konular hakkında soru soran veya farklı bakış açıları arayan.\n  - **Bağlamsal:** Kullanıcıya özel veya örtük bağlama bağlı olan.\n\n### Uyarlanabilir Strateji Yönlendirmesi\n\n- Bir `Switch` düğümü (Yönlendirme Düğümü), iş akışını bir önceki adımdaki sınıflandırma sonucuna göre yönlendirir.\n\n### Strateji Uygulaması (Sorgu Uyarlaması)\n\n- Yönlendirmeye bağlı olarak, belirli bir Google Gemini ajanı sorguyu veya yaklaşımı uyarlar:\n  - **Olgusal Strateji:** Anahtar varlıklara odaklanarak daha iyi kesinlik için sorguyu yeniden yazar (`Factual Strategy - Focus on Precision` - Olgusal Strateji - Kesinliğe Odaklanma).\n  - **Analitik Strateji:** Kapsamlı bir şekilde ele alınmasını sağlamak için ana sorguyu birden fazla alt soruya böler (`Analytical Strategy - Comprehensive Coverage` - Analitik Strateji - Kapsamlı Ele Alma).\n  - **Görüş Stratejisi:** Sorguyla ilgili farklı potansiyel bakış açılarını veya yaklaşımları tanımlar (`Opinion Strategy - Diverse Perspectives` - Görüş Stratejisi - Farklı Bakış Açıları).\n  - **Bağlamsal Strateji:** Sorguyu etkili bir şekilde yanıtlamak için gereken örtük bağlamı çıkarır (`Contextual Strategy - User Context Integration` - Bağlamsal Strateji - Kullanıcı Bağlamı Entegrasyonu).\n- Her strateji yolu, uyarlama adımı için kendi sohbet belleği tamponunu kullanır.\n\n### Geri Getirme İstemcisi ve Çıktı Kurulumu\n\n- *Orijinal* sorgu sınıflandırmasına dayanarak, bir `Set` düğümü (`Factual/Analytical/Opinion/Contextual Prompt and Output` - Olgusal/Analitik/Görüş/Bağlamsal İstemci ve Çıktı, `Set Prompt and Output` - İstemci ve Çıktı Ayarla düğümüne bağlantılar aracılığıyla birleştirilir) şunları hazırlar:\n  - Strateji adımından gelen çıktı (örneğin, yeniden yazılmış sorgu, alt sorular, bakış açıları).\n  - Son yanıt üretim ajanı için özel olarak hazırlanmış bir sistem istemcisi; sorgu türüne göre nasıl davranacağını belirtir (örneğin, Olgusal için kesinliğe odaklan, Görüş için farklı görüşler sun).\n\n### Belge Geri Getirme (RAG)\n\n- `Retrieve Documents from Vector Store` (Vektör Deposundan Belgeleri Geri Getir) düğümü, belirtilen Qdrant koleksiyonunda (`vector_store_id`) arama yapmak için strateji adımından gelen uyarlanmış sorguyu/çıktıyı kullanır.\n- Google Gemini gömülerini (vektörlerini) kullanarak en alakalı belge parçalarını geri getirir.\n\n### Bağlam Hazırlığı\n\n- Geri getirilen belge parçalarından elde edilen içerik, son yanıt üretimi için tek bir bağlam bloğu oluşturmak üzere birleştirilir (`Concatenate Context` - Bağlamı Birleştir).\n\n### Yanıt Üretimi\n\n- Son `Answer` (Yanıt) ajanı (Google Gemini tarafından desteklenir) yanıtı üretir.\n- Şunları kullanır:\n  - 5. adımda ayarlanan özel sistem istemcisi.\n  - Geri getirilen belgelerden birleştirilmiş bağlam (7. adım).\n  - Orijinal `user_query`.\n  - Paylaşılan sohbet geçmişi (`Chat Buffer Memory` - Sohbet Belleği Tamponu, `chat_memory_key` kullanılarak).\n\n### Yanıt\n\n- Üretilen yanıt, `Respond to Webhook` (Webhook'a Yanıt Ver) düğümü aracılığıyla kullanıcıya geri gönderilir.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "bec8070f-2ce9-4930-b71e-685a2b21d3f2",
      "name": "Notizzettel8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -40,
        -20
      ],
      "parameters": {
        "color": 7,
        "width": 320,
        "height": 820,
        "content": "## ⚠️  Using in Chat mode\n\nUpdate the `vector_store_id` variable to the corresponding Qdrant ID needed to perform the documents retrieval.\n\n## ⚠️ Sohbet modunda kullanım sağlayın\n\nvector_store_id` değişkenini belge alımını gerçekleştirmek için gereken ilgili Qdrant ID'sine güncelleyin."
      },
      "typeVersion": 1
    },
    {
      "id": "dc002d7a-df79-4d61-880a-db32917d9814",
      "name": "Notizzettel9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1220,
        580
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "active": true,
  "pinData": {},
  "settings": {},
  "versionId": "fbee3fa8-a249-4841-b786-817f0992ae6b",
  "connections": {
    "45887701-5ea5-48b4-9b2b-40a80238ab0c": {
      "main": [
        [
          {
            "node": "0785714f-c45c-4eda-9937-c97e44c9a449",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fab91e48-1c62-46a8-b9fc-39704f225274": {
      "main": [
        [
          {
            "node": "5cd0dd02-65f4-4351-aeae-c70ecf5f1d66",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cc2106fc-f1a8-45ef-b37b-ab981ac13466": {
      "main": [
        [
          {
            "node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "020d2201-9590-400d-b496-48c65801271c",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "c35d1b95-68c8-4237-932d-4744f620760d",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "363a3fc3-112f-40df-891e-0a5aa3669245",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d33377c2-6b98-4e4d-968f-f3085354ae50": {
      "ai_embedding": [
        [
          {
            "node": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "0c623ca1-da85-48a3-9d8b-90d97283a015": {
      "ai_languageModel": [
        [
          {
            "node": "fab91e48-1c62-46a8-b9fc-39704f225274",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "c0828ee3-f184-41f5-9a25-0f1059b03711": {
      "ai_languageModel": [
        [
          {
            "node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "52dcd9f0-e6b3-4d33-bc6f-621ef880178e": {
      "ai_languageModel": [
        [
          {
            "node": "c35d1b95-68c8-4237-932d-4744f620760d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "0785714f-c45c-4eda-9937-c97e44c9a449": {
      "main": [
        [
          {
            "node": "856bd809-8f41-41af-8f72-a3828229c2a5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "98f9981d-ea8e-45cb-b91d-3c8d1fe33e25": {
      "ai_languageModel": [
        [
          {
            "node": "020d2201-9590-400d-b496-48c65801271c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "3cb6bf32-5937-49b9-acf7-d7d01dc2ddd1": {
      "ai_languageModel": [
        [
          {
            "node": "363a3fc3-112f-40df-891e-0a5aa3669245",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "d69f8d62-3064-40a8-b490-22772fbc38cd": {
      "ai_memory": [
        [
          {
            "node": "fab91e48-1c62-46a8-b9fc-39704f225274",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "16fa1531-9fb9-4b12-961c-be12e20b2134": {
      "main": [
        [
          {
            "node": "fab91e48-1c62-46a8-b9fc-39704f225274",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "856bd809-8f41-41af-8f72-a3828229c2a5": {
      "main": [
        [
          {
            "node": "cc2106fc-f1a8-45ef-b37b-ab981ac13466",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fcd29f6b-17e8-442c-93f9-b93fbad7cd10": {
      "ai_languageModel": [
        [
          {
            "node": "856bd809-8f41-41af-8f72-a3828229c2a5",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "7e68f9cb-0a0d-4215-8083-3b9ef92cd237": {
      "main": [
        [
          {
            "node": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7f7df364-4829-4e29-be3d-d13a63f65b8f": {
      "main": [
        [
          {
            "node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74": {
      "main": [
        [
          {
            "node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c39ba907-7388-4152-965a-e28e626bc9b2": {
      "ai_memory": [
        [
          {
            "node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "147a709a-4b46-4835-82cf-7d6b633acd4c": {
      "ai_memory": [
        [
          {
            "node": "c35d1b95-68c8-4237-932d-4744f620760d",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "c769a76a-fb26-46a1-a00d-825b689d5f7a": {
      "main": [
        [
          {
            "node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "590d8667-69eb-4db2-b5be-714c602b319a": {
      "main": [
        [
          {
            "node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c85f270d-3224-4e60-9acf-91f173dfe377": {
      "ai_memory": [
        [
          {
            "node": "020d2201-9590-400d-b496-48c65801271c",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "5916c4f1-4369-4d66-8553-2fff006b7e69": {
      "ai_memory": [
        [
          {
            "node": "363a3fc3-112f-40df-891e-0a5aa3669245",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "3ef73405-89de-4bed-9673-90e2c1f2e74b": {
      "main": [
        [
          {
            "node": "0785714f-c45c-4eda-9937-c97e44c9a449",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0": {
      "main": [
        [
          {
            "node": "16fa1531-9fb9-4b12-961c-be12e20b2134",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "63889cad-1283-4dbf-ba16-2b6cf575f24a": {
      "main": [
        [
          {
            "node": "7f7df364-4829-4e29-be3d-d13a63f65b8f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c35d1b95-68c8-4237-932d-4744f620760d": {
      "main": [
        [
          {
            "node": "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "020d2201-9590-400d-b496-48c65801271c": {
      "main": [
        [
          {
            "node": "c769a76a-fb26-46a1-a00d-825b689d5f7a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "363a3fc3-112f-40df-891e-0a5aa3669245": {
      "main": [
        [
          {
            "node": "590d8667-69eb-4db2-b5be-714c602b319a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Bausteine, Künstliche Intelligenz

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes40
Kategorie2
Node-Typen12
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor

software dev | business automation specialist

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34