Ein Frage-Antwort-System für Paul-Graham-Artikel mit OpenAI und Milvus-Vektordatenbank erstellen

Experte

Dies ist ein AI-Bereich Automatisierungsworkflow mit 22 Nodes. Hauptsächlich werden Html, Limit, SplitOut, HttpRequest, ManualTrigger und andere Nodes verwendet, kombiniert mit KI-Technologie für intelligente Automatisierung. Erstellen Sie ein Paul Graham-Artikel-Fragen-Antwort-System mit OpenAI und Milvus-Vektordatenbank

Voraussetzungen
  • Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
  • OpenAI API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "meta": {
    "instanceId": "89c9c2dbc29ad74e9e02caaf3e27ce718c567278274962e355a9a9679d5f3af7"
  },
  "nodes": [
    {
      "id": "33e94ee1-4244-4075-bb4b-93a99a2cacd9",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        20,
        560
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "dd97266d-a039-4d8f-bc7d-fb439ad5a6d7",
      "name": "Bei Klick auf \"Workflow ausführen\"",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -180,
        0
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
      "name": "Essay-Liste abrufen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        80,
        0
      ],
      "parameters": {
        "url": "http://www.paulgraham.com/articles.html",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
      "name": "Essay-Namen extrahieren",
      "type": "n8n-nodes-base.html",
      "position": [
        280,
        0
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "essay",
              "attribute": "href",
              "cssSelector": "table table a",
              "returnArray": true,
              "returnValue": "attribute"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "c121dc65-37e3-49d4-b449-f28491e19a6f",
      "name": "In einzelne Elemente aufteilen",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        480,
        0
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "essay"
      },
      "typeVersion": 1
    },
    {
      "id": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
      "name": "Essay-Texte abrufen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        880,
        0
      ],
      "parameters": {
        "url": "=http://www.paulgraham.com/{{ $json.essay }}",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
      "name": "Auf erste 3 begrenzen",
      "type": "n8n-nodes-base.limit",
      "position": [
        680,
        0
      ],
      "parameters": {
        "maxItems": 3
      },
      "typeVersion": 1
    },
    {
      "id": "318aeeed-fcce-4de2-aa04-92033ef01f28",
      "name": "Nur Text extrahieren",
      "type": "n8n-nodes-base.html",
      "position": [
        1200,
        0
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "data",
              "cssSelector": "body",
              "skipSelectors": "img,nav"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "0668851e-a31f-4e6e-8966-4544092e318e",
      "name": "Kurznotiz3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        0,
        -120
      ],
      "parameters": {
        "width": 1071.752021563343,
        "height": 285.66037735849045,
        "content": "## Scrape latest Paul Graham essays"
      },
      "typeVersion": 1
    },
    {
      "id": "cf9af24c-9e08-4f27-ad4e-509f72e54a9b",
      "name": "Kurznotiz5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1120,
        -120
      ],
      "parameters": {
        "width": 625,
        "height": 607,
        "content": "## Load into Milvus vector store"
      },
      "typeVersion": 1
    },
    {
      "id": "95e9a59d-1832-4eb7-b58d-ba391c1acb1c",
      "name": "Bei Empfang einer Chat-Nachricht",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -200,
        380
      ],
      "webhookId": "cd2703a7-f912-46fe-8787-3fb83ea116ab",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "0076ea3d-e667-4df2-83c3-9de0d3de0498",
      "name": "Kurznotiz",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -380,
        -160
      ],
      "parameters": {
        "width": 280,
        "height": 180,
        "content": "## Step 1\n1. Set up a Milvus server based on [this guide](https://milvus.io/docs/install_standalone-docker-compose.md). And then create a collection named `my_collection`.\n2. Click this workflow to load scrape and load Paul Graham essays to Milvus collection.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
      "name": "Milvus Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
      "position": [
        1420,
        0
      ],
      "parameters": {
        "mode": "insert",
        "options": {
          "clearCollection": true
        },
        "milvusCollection": {
          "__rl": true,
          "mode": "list",
          "value": "my_collection",
          "cachedResultName": "my_collection"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "d786c471-d564-4f25-beab-f1c7f4559f7a",
      "name": "Standard-Datenlader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        1460,
        220
      ],
      "parameters": {
        "options": {},
        "jsonData": "={{ $('Extract Text Only').item.json.data }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "26730b7b-2bb9-46f8-83c3-3d4ffdfdef57",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1320,
        240
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "de836110-4073-44d5-bbf3-d57f57525f69",
      "name": "Rekursiver Zeichentext-Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1540,
        340
      ],
      "parameters": {
        "options": {},
        "chunkSize": 6000
      },
      "typeVersion": 1
    },
    {
      "id": "ddaa936e-416a-40e4-adf6-cf7ebfb8b094",
      "name": "Kurznotiz1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -380,
        280
      ],
      "parameters": {
        "width": 280,
        "height": 120,
        "content": "## Step 2\nChat with this QA Chain with Milvus retriever\n"
      },
      "typeVersion": 1
    },
    {
      "id": "f5b7410f-37c7-40ff-b841-12ed04252317",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        80,
        860
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.2
    },
    {
      "id": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
      "name": "Milvus Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
      "position": [
        120,
        720
      ],
      "parameters": {
        "milvusCollection": {
          "__rl": true,
          "mode": "list",
          "value": "my_collection",
          "cachedResultName": "my_collection"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "2402387f-e147-4239-9128-34af296e0012",
      "name": "Kurznotiz2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -20,
        360
      ],
      "parameters": {
        "color": 7,
        "width": 574,
        "height": 629,
        "content": ""
      },
      "typeVersion": 1
    },
    {
      "id": "3665ef25-e464-496a-84d6-980b96e78e9a",
      "name": "Q&A-Kette zum Abrufen aus Milvus und Beantworten der Frage",
      "type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
      "position": [
        120,
        380
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.5
    },
    {
      "id": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
      "name": "Milvus Vector Store Retriever",
      "type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
      "position": [
        260,
        580
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "c4d4a979-3182-46c9-b145-fa4e6ba57011": {
      "main": [
        [
          {
            "node": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cd84596e-4046-4d33-9f43-cf464e5c5c01": {
      "main": [
        [
          {
            "node": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26730b7b-2bb9-46f8-83c3-3d4ffdfdef57": {
      "ai_embedding": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "318aeeed-fcce-4de2-aa04-92033ef01f28": {
      "main": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5644c48d-62b6-4e2d-ad25-013b55f5ec71": {
      "main": [
        [
          {
            "node": "318aeeed-fcce-4de2-aa04-92033ef01f28",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "33e94ee1-4244-4075-bb4b-93a99a2cacd9": {
      "ai_languageModel": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f5b7410f-37c7-40ff-b841-12ed04252317": {
      "ai_embedding": [
        [
          {
            "node": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "d786c471-d564-4f25-beab-f1c7f4559f7a": {
      "ai_document": [
        [
          {
            "node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "2e2913f9-d01a-41e8-b1b8-9a981910db7b": {
      "main": [
        [
          {
            "node": "c121dc65-37e3-49d4-b449-f28491e19a6f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7a5d1b3f-9b2c-4943-9b40-2a213e30159c": {
      "ai_vectorStore": [
        [
          {
            "node": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "c121dc65-37e3-49d4-b449-f28491e19a6f": {
      "main": [
        [
          {
            "node": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "95e9a59d-1832-4eb7-b58d-ba391c1acb1c": {
      "main": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "10bf4a2c-ee2b-4185-b1e5-29b8664078fb": {
      "ai_retriever": [
        [
          {
            "node": "3665ef25-e464-496a-84d6-980b96e78e9a",
            "type": "ai_retriever",
            "index": 0
          }
        ]
      ]
    },
    "dd97266d-a039-4d8f-bc7d-fb439ad5a6d7": {
      "main": [
        [
          {
            "node": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "de836110-4073-44d5-bbf3-d57f57525f69": {
      "ai_textSplitter": [
        [
          {
            "node": "d786c471-d564-4f25-beab-f1c7f4559f7a",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Künstliche Intelligenz

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes22
Kategorie1
Node-Typen14
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor
Cheney Zhang

Cheney Zhang

@zc277584121

Algorithm engineer at Zilliz, dedicating to the application of vector databases in the AI ecosystem.

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34