🔍🛠️ Tavily-Suche und -Extraktion - Vorlage

Experte

Dies ist ein Automatisierungsworkflow mit 17 Nodes. Hauptsächlich werden Set, HttpRequest, ChainLlm, ChatTrigger, LmChatOpenAi und andere Nodes verwendet. 🤖🔍 Ultimativer kostenloser KI-gestützter Forscher (Tavily-Websuche und -Extraktion)

Voraussetzungen
  • Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
  • OpenAI API Key

Kategorie

-
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "QqbYH25we4JDZrZD",
  "meta": {
    "instanceId": "31e69f7f4a77bf465b805824e303232f0227212ae922d12133a0f96ffeab4fef"
  },
  "name": "🔍🛠️ Tavily Search & Extract - Template",
  "tags": [],
  "nodes": [
    {
      "id": "e029204b-2e05-4262-b464-7c1b3a995f91",
      "name": "Notizzettel1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -780,
        -940
      ],
      "parameters": {
        "color": 4,
        "width": 520,
        "height": 940,
        "content": "## Tavily API Search Endpoint\n\n**Base URL**: `https://api.tavily.com/search`\n**Method**: POST\n\n### Required Parameters\n- `query`: The search query string\n- `api_key`: Your Tavily API key\n\n### Optional Parameters\n- `search_depth`: \"basic\" or \"advanced\" (default: \"basic\")\n- `topic`: \"general\" or \"news\" (default: \"general\") \n- `max_results`: Maximum number of results to return (default: 5)\n- `include_images`: Include query-related images (default: false)\n- `include_answer`: Include AI-generated answer (default: false)\n- `include_raw_content`: Include parsed HTML content (default: false)\n- `include_domains`: List of domains to include\n- `exclude_domains`: List of domains to exclude\n- `time_range`: Filter by time range (\"day\", \"week\", \"month\", \"year\")\n- `days`: Number of days back for news results (default: 3)\n\n### Example Request\n```json\n{\n    \"api_key\": \"tvly-YOUR_API_KEY\",\n    \"query\": \"Who is Leo Messi?\",\n    \"search_depth\": \"basic\",\n    \"include_answer\": false,\n    \"include_images\": true,\n    \"max_results\": 5\n}\n```\n"
      },
      "typeVersion": 1
    },
    {
      "id": "6c47edec-6c6e-460d-b098-f9a26caa5f8e",
      "name": "Notizzettel",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        -940
      ],
      "parameters": {
        "color": 6,
        "width": 640,
        "height": 720,
        "content": "## Tavily API Extract Endpoint \n\n**Base URL**: `https://api.tavily.com/extract`\n**Method**: POST\n\n### Required Parameters\n- `urls`: Single URL string or array of URLs\n- `api_key`: Your Tavily API key\n\n### Optional Parameters\n- `include_images`: Include extracted images (default: false)\n\n### Example Request\n```json\n{\n    \"api_key\": \"tvly-YOUR_API_KEY\", \n    \"urls\": [\n        \"https://en.wikipedia.org/wiki/Artificial_intelligence\",\n        \"https://en.wikipedia.org/wiki/Machine_learning\"\n    ]\n}\n```"
      },
      "typeVersion": 1
    },
    {
      "id": "cacae1d1-c9ec-4c2f-ba5d-f782257697cc",
      "name": "Notizzettel2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1240,
        -940
      ],
      "parameters": {
        "color": 3,
        "width": 420,
        "height": 540,
        "content": "## Tavily API Documentation\n\nThe Tavily REST API provides seamless access to Tavily Search, a powerful search engine for LLM agents, and Tavily Extract, an advanced web scraping solution optimized for LLMs.\n\nhttps://docs.tavily.com/docs/rest-api/examples\n\nhttps://docs.tavily.com/docs/rest-api/api-reference#parameters\n\nThe Tavily API provides two main endpoints for search and data extraction.\n\nThe API returns JSON responses containing:\n\n- Search results with titles, URLs, and content\n- Extracted raw content from specified URLs\n- Response time metrics\n- Any error messages for failed requests\n\n\n**Note**: Error handling should check for failed results in the response before processing.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "16e977f4-e72d-474c-a04b-3f3ad51cc322",
      "name": "Notizzettel3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1240,
        -360
      ],
      "parameters": {
        "width": 420,
        "height": 360,
        "content": "## Tavily Use Cases\n\n📜 Why Use Tavily API for Data Enrichment?\n\nhttps://docs.tavily.com/docs/use-cases/data-enrichment\n\n💡 Why Use Tavily API for Company Research?\n\nhttps://docs.tavily.com/docs/use-cases/company-research\n\n🔍 GPT Researcher\n\nhttps://docs.tavily.com/docs/gpt-researcher/introduction"
      },
      "typeVersion": 1
    },
    {
      "id": "7e4d0b3c-761d-42b9-bbbe-6ceb366fdc6f",
      "name": "Tavily Search",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -580,
        -180
      ],
      "parameters": {
        "url": "https://api.tavily.com/search",
        "body": "={\n    \"api_key\": \"tvly-YOUR_API_KEY\",\n    \"query\": \"What is n8n?\",\n    \"search_depth\": \"basic\",\n    \"include_answer\": false,\n    \"include_images\": true,\n    \"include_image_descriptions\": true,\n    \"include_raw_content\": false,\n    \"max_results\": 5,\n    \"include_domains\": [],\n    \"exclude_domains\": []\n}",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "raw",
        "rawContentType": "application/json"
      },
      "typeVersion": 4.2
    },
    {
      "id": "47c0bfcf-a187-4b15-b208-2458c934d5f7",
      "name": "Tavily Extract",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        40,
        -400
      ],
      "parameters": {
        "url": "https://api.tavily.com/extract",
        "body": "={\n    \"api_key\": \"tvly-YOUR_API_KEY\",\n    \"urls\": [\n        \"https://en.wikipedia.org/wiki/Artificial_intelligence\"\n    ]\n}",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "raw",
        "rawContentType": "application/json"
      },
      "typeVersion": 4.2
    },
    {
      "id": "47791d39-087b-4104-aa0d-ef98deee945c",
      "name": "Notizzettel4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1940,
        -1020
      ],
      "parameters": {
        "color": 7,
        "width": 660,
        "height": 1020,
        "content": "## Tavily API Overview\nhttps://docs.tavily.com/docs/welcome\n\nThe Tavily API provides a specialized search engine built specifically for AI agents and LLM applications, offering two main endpoints:\n\n## Search Endpoint\n\nThe search endpoint enables intelligent web searching with:\n\n**Key Features**\n- Query-based search with customizable depth (\"basic\" or \"advanced\")\n- Topic filtering for general or news content\n- Control over result quantity and content type\n- Domain inclusion/exclusion capabilities\n- Time range filtering and news date restrictions\n\n## Extract Endpoint\n\nThe extract endpoint focuses on content retrieval:\n\n**Key Features**\n- Single or batch URL processing\n- Raw content extraction\n- Optional image extraction\n- Structured response format\n\n## Implementation Benefits\n\n**For AI Integration**\n- Optimized for RAG (Retrieval Augmented Generation)\n- Single API call handles searching, scraping and filtering\n- Customizable response formats\n- Built-in content relevance scoring\n\n**Technical Advantages**\n- JSON response format\n- Error handling for failed requests\n- Response time metrics\n- Flexible content filtering options\n\n\nThis API is designed to simplify the integration of real-time web data into AI applications while ensuring high-quality, relevant results through intelligent processing and filtering."
      },
      "typeVersion": 1
    },
    {
      "id": "76b291bc-8c34-44f1-b366-09c9f51089e2",
      "name": "Top-Ergebnis abrufen",
      "type": "n8n-nodes-base.set",
      "position": [
        -700,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a73e848c-f7e7-4b3a-ae99-930c577b47be",
              "name": "results",
              "type": "object",
              "value": "={{ $json.results.first() }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "4b098e57-eff2-4e70-9429-23b5c3d936c2",
      "name": "Tavily Extract Top Search",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -480,
        140
      ],
      "parameters": {
        "url": "https://api.tavily.com/extract",
        "body": "={\n    \"api_key\": \"{{ $('Tavily API Key').item.json.api_key }}\",\n    \"urls\": [\n        \"{{ $json.results.url }}\"\n    ]\n}",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "raw",
        "rawContentType": "application/json"
      },
      "typeVersion": 4.2
    },
    {
      "id": "f593e164-1c9d-46e6-a619-39fe621c829f",
      "name": "Filter > 90%",
      "type": "n8n-nodes-base.set",
      "position": [
        -920,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "8fd0cfc4-7adc-45f9-a278-d217e362ebfb",
              "name": "results",
              "type": "array",
              "value": "={{ $json.results.filter(item => item.score > 0.80) }}"
            }
          ]
        },
        "includeOtherFields": true
      },
      "typeVersion": 3.4
    },
    {
      "id": "fadd100c-0335-42c2-9c3d-48e6d17eb2f9",
      "name": "Tavily Search Topic",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -1140,
        140
      ],
      "parameters": {
        "url": "https://api.tavily.com/search",
        "body": "={\n    \"api_key\": \"{{ $json.api_key }}\",\n    \"query\": \"{{ $('Provide search topic via Chat window').item.json.chatInput }}\",\n    \"search_depth\": \"basic\",\n    \"include_answer\": false,\n    \"include_images\": true,\n    \"include_image_descriptions\": true,\n    \"include_raw_content\": false,\n    \"max_results\": 5,\n    \"include_domains\": [],\n    \"exclude_domains\": []\n}",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "raw",
        "rawContentType": "application/json"
      },
      "typeVersion": 4.2
    },
    {
      "id": "1bc5a21f-0f96-4951-9c88-0bec00b9c586",
      "name": "OpenAI-Chat-Modell",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -240,
        300
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "jEMSvKmtYfzAkhe6",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "994bb3ee-598b-4d3f-bcfc-16c9cca36657",
      "name": "Webseiteninhalt zusammenfassen",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        -260,
        140
      ],
      "parameters": {
        "text": "=Summarize this web content and provide in Markdown format:  {{ $json.results[0].raw_content }}",
        "promptType": "define"
      },
      "typeVersion": 1.5
    },
    {
      "id": "d5520da7-f6bc-470e-ab96-e04097041f08",
      "name": "Notizzettel5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1680,
        40
      ],
      "parameters": {
        "color": 5,
        "width": 1800,
        "height": 400,
        "content": "## Tavily Search and Extract with AI Summarization Example"
      },
      "typeVersion": 1
    },
    {
      "id": "9bd6c18e-aabf-4719-b9c4-ac91b36891a1",
      "name": "Tavily API Key",
      "type": "n8n-nodes-base.set",
      "position": [
        -1360,
        140
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "035660a9-bb58-4ecb-bad3-7f4d017fa69f",
              "name": "api_key",
              "type": "string",
              "value": "tvly-YOUR_API_KEY"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "41f36ad7-7a2b-4732-89ec-fe6500768631",
      "name": "Suchthema via Chat-Fenster eingeben",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -1580,
        140
      ],
      "webhookId": "6b8f316b-776e-429a-8699-55f230c3a168",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "0213756a-35c4-46a8-9b79-2e8a81852177",
      "name": "Notizzettel6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1420,
        320
      ],
      "parameters": {
        "color": 7,
        "height": 80,
        "content": "### Tavily API Key\nhttps://app.tavily.com/home"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "e1f22fbb-9663-405c-b7b1-7e8b2d54ad0f",
  "connections": {
    "f593e164-1c9d-46e6-a619-39fe621c829f": {
      "main": [
        [
          {
            "node": "76b291bc-8c34-44f1-b366-09c9f51089e2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "76b291bc-8c34-44f1-b366-09c9f51089e2": {
      "main": [
        [
          {
            "node": "4b098e57-eff2-4e70-9429-23b5c3d936c2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9bd6c18e-aabf-4719-b9c4-ac91b36891a1": {
      "main": [
        [
          {
            "node": "fadd100c-0335-42c2-9c3d-48e6d17eb2f9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "994bb3ee-598b-4d3f-bcfc-16c9cca36657",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "fadd100c-0335-42c2-9c3d-48e6d17eb2f9": {
      "main": [
        [
          {
            "node": "f593e164-1c9d-46e6-a619-39fe621c829f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "4b098e57-eff2-4e70-9429-23b5c3d936c2": {
      "main": [
        [
          {
            "node": "994bb3ee-598b-4d3f-bcfc-16c9cca36657",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "41f36ad7-7a2b-4732-89ec-fe6500768631": {
      "main": [
        [
          {
            "node": "9bd6c18e-aabf-4719-b9c4-ac91b36891a1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes17
Kategorie-
Node-Typen6
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor
Joseph LePage

Joseph LePage

@joe

As an AI Automation consultant based in Canada, I partner with forward-thinking organizations to implement AI solutions that streamline operations and drive growth.

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34