AI-Sonar-Inferenz getriebene GCE O-Level-Mathematik-Thema-Analyse und Prognose

Fortgeschritten

Dies ist ein Document Extraction, AI Summarization-Bereich Automatisierungsworkflow mit 14 Nodes. Hauptsächlich werden Set, Html, Slack, Markdown, Wordpress und andere Nodes verwendet. KI-Analyse und Veröffentlichung der GCE O-Level-Mathematik-Prognose von Perplexity AI auf WordPress und Slack

Voraussetzungen
  • Slack Bot Token oder Webhook URL
  • Möglicherweise sind Ziel-API-Anmeldedaten erforderlich
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "oYrTphNZqfYV6uJX",
  "meta": {
    "instanceId": "b91e510ebae4127f953fd2f5f8d40d58ca1e71c746d4500c12ae86aad04c1502"
  },
  "name": "AI Sonar-Reasoning Powered GCE O-Level Math Topic Analysis & Prediction",
  "tags": [],
  "nodes": [
    {
      "id": "816a5f56-ea2b-49ff-b42b-4661716ee3d5",
      "name": "Manueller Auslöser",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        656,
        -16
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b6013e58-fbe9-482c-b7c6-327735bca79d",
      "name": "GCE O-Level Mathematik-Lehrplan abrufen",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        880,
        -112
      ],
      "parameters": {
        "url": "https://www.seab.gov.sg/docs/default-source/national-examinations/syllabus/olevel/2025syllabus/4048_y25_sy.pdf",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed",
      "name": "Lehrplantext extrahieren",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        1104,
        -112
      ],
      "parameters": {
        "options": {},
        "operation": "text"
      },
      "typeVersion": 1
    },
    {
      "id": "3655c347-a6d6-4d5b-a7dc-e1c552ddf75b",
      "name": "Analysedaten vorbereiten",
      "type": "n8n-nodes-base.set",
      "position": [
        1296,
        -112
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "a1",
              "name": "syllabus_content",
              "type": "string",
              "value": "={{ $json.data }}"
            },
            {
              "id": "a2",
              "name": "analysis_year",
              "type": "number",
              "value": "=2025"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "85229eea-e100-45a1-967e-bad53795037e",
      "name": "Historischen Kontext laden",
      "type": "n8n-nodes-base.set",
      "position": [
        1024,
        32
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "b1",
              "name": "historical_topics",
              "type": "string",
              "value": "=Algebra (equations, inequalities, functions), Geometry (congruence, similarity, circle theorems), Trigonometry (ratios, identities, graphs), Statistics (data analysis, probability), Number patterns (sequences, series), Mensuration (area, volume, surface area), Coordinate geometry (gradients, equations of lines), Vectors (operations, applications), Matrices (operations, transformations), Sets (Venn diagrams, operations)"
            },
            {
              "id": "b2",
              "name": "challenging_areas",
              "type": "string",
              "value": "=Circle theorems and angle properties, Trigonometric identities and proofs, Probability with multiple events, Algebraic manipulation and factorization, Application problems requiring multi-step reasoning"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
      "name": "KI-Analyse-Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1520,
        -16
      ],
      "parameters": {
        "text": "=You are an expert educational analyst specializing in GCE O-Level Mathematics examinations in Singapore.\n\nAnalyze the following syllabus content and provide a comprehensive exam analysis:\n\n**Syllabus Content:**\n{{ $('Prepare Analysis Data').item.json.syllabus_content }}\n\n**Historical Context:**\nRecurring Topics: {{ $('Load Historical Context').item.json.historical_topics }}\nChallenging Areas: {{ $('Load Historical Context').item.json.challenging_areas }}\n\n**Required Output Structure (JSON format):**\n```json\n{\n  \"exam_summary\": {\n    \"year\": 2025,\n    \"total_marks\": \"Paper 1 + Paper 2 distribution\",\n    \"key_changes\": \"Notable syllabus changes for 2025\"\n  },\n  \"top_10_recurring_topics\": [\n    {\n      \"rank\": 1,\n      \"topic\": \"Topic name\",\n      \"frequency_percentage\": 85,\n      \"typical_question_types\": \"Description\"\n    }\n  ],\n  \"top_5_challenging_areas\": [\n    {\n      \"rank\": 1,\n      \"area\": \"Area name\",\n      \"difficulty_reason\": \"Why students struggle\",\n      \"success_tips\": \"Brief study advice\"\n    }\n  ],\n  \"topic_weightage\": {\n    \"algebra\": {\"percentage\": 25, \"marks_range\": \"25-30 marks\"},\n    \"geometry\": {\"percentage\": 20, \"marks_range\": \"20-25 marks\"},\n    \"trigonometry\": {\"percentage\": 15, \"marks_range\": \"15-20 marks\"},\n    \"statistics\": {\"percentage\": 20, \"marks_range\": \"20-25 marks\"},\n    \"number_patterns\": {\"percentage\": 10, \"marks_range\": \"10-15 marks\"},\n    \"others\": {\"percentage\": 10, \"marks_range\": \"10-15 marks\"}\n  },\n  \"predicted_questions\": [\n    {\n      \"prediction_number\": 1,\n      \"paper\": \"Paper 1 or Paper 2\",\n      \"topic_combination\": \"Topics involved\",\n      \"question_type\": \"Description of question format\",\n      \"confidence_score\": 85,\n      \"reasoning\": \"Why this is likely based on patterns\"\n    }\n  ]\n}\n```\n\nProvide detailed, actionable insights based on historical exam patterns and the 2025 syllabus emphasis.",
        "options": {
          "systemMessage": "You are a GCE O-Level Mathematics exam specialist with deep knowledge of Singapore's education system, syllabus trends, and student learning patterns. Provide accurate, evidence-based analysis."
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "8270de30-9c03-4711-a9e9-bae4bf2c9243",
      "name": "KI-Ausgabe parsen",
      "type": "n8n-nodes-base.set",
      "position": [
        1792,
        -16
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3.4
    },
    {
      "id": "cce94e46-d2a1-4624-8d08-25be02ce4c1f",
      "name": "Bericht formatieren",
      "type": "n8n-nodes-base.markdown",
      "position": [
        1952,
        -16
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "a3c4b303-c81c-41b9-b770-2abb1568c22e",
      "name": "In HTML konvertieren",
      "type": "n8n-nodes-base.html",
      "position": [
        2112,
        -16
      ],
      "parameters": {},
      "typeVersion": 1.2
    },
    {
      "id": "f56cd26a-aedc-42e8-9ecd-c119d892e4db",
      "name": "Auf WordPress veröffentlichen",
      "type": "n8n-nodes-base.wordpress",
      "position": [
        2288,
        -16
      ],
      "parameters": {
        "title": "=GCE O-Level Math Predictions {{ $('Prepare Analysis Data').item.json.analysis_year }}",
        "additionalFields": {}
      },
      "typeVersion": 1
    },
    {
      "id": "79d45a5b-7988-47c7-aae9-fc3c64fee16b",
      "name": "Slack-Zusammenfassung senden",
      "type": "n8n-nodes-base.slack",
      "position": [
        2480,
        -16
      ],
      "webhookId": "9fa18884-3c76-4df3-af30-7be8b658738c",
      "parameters": {
        "text": "=🎓 *GCE O-Level Mathematics Exam Analysis {{ $('Prepare Analysis Data').item.json.analysis_year }} - Now Available!*\n\n📊 *Key Highlights:*\n• Top 10 recurring topics identified\n• 5 challenging areas with success tips\n• Topic weightage breakdown\n• 5 predicted question types with confidence scores\n\n📝 *Top 3 Predicted Topics:*\n{{ $('Parse AI Output').item.json.predicted_questions.slice(0, 3).map((p, i) => `${i + 1}. ${p.topic_combination} (${p.confidence_score}% confidence)`).join('\\n') }}\n\n🔗 Full report published to WordPress\n\n_Analysis based on 2025 syllabus and historical exam patterns_",
        "otherOptions": {}
      },
      "typeVersion": 2.2
    },
    {
      "id": "22696c5f-9c7d-489e-a6ef-f3d94b0197a4",
      "name": "OpenRouter Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        1520,
        160
      ],
      "parameters": {
        "model": "perplexity/sonar-reasoning",
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "fKnn6LL7cRFqNHDX",
          "name": "OpenRouter account2"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "e5a1c828-8bda-4c3c-87b2-55b02cc026ac",
      "name": "Haftnotiz",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        704,
        176
      ],
      "parameters": {
        "width": 752,
        "height": 544,
        "content": "## **Introduction**\nExams create significant stress for students. This workflow automates syllabus analysis and predicts exam trends using AI, helping educators and students better prepare for GCE 'O' Level Mathematics in Singapore.\n\n## **How It Works**\nTrigger → Fetch Syllabus → Extract & Prepare Data → Load History → AI Analyze → Parse → Format → Convert → Publish → Notify\n\n## **Workflow Template**\nManual Trigger → Fetch O-Level Math Syllabus → Extract Syllabus Text → Prepare Analysis Data → Load Historical Context → AI Analysis Agent → Parse AI Output → Format Report → Convert to HTML → Publish to WordPress → Send Slack Summary\n\n## **Data Collection & AI Processing**\nHTTP retrieves O-Level Math syllabus from SEAB and extracts text. Loads 3-5 years exam history. OpenRouter compares syllabus vs trends, predicts topics with confidence scores.\n\n## **Report Generation & Publishing**\nFormats AI insights to Markdown (topics, trends, recommendations), converts to HTML. Auto-publishes to WordPress and sends Slack summary with report link.\n\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "15fbf510-bf4e-488d-b2a6-781dae32ba07",
      "name": "Haftnotiz1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1760,
        144
      ],
      "parameters": {
        "color": 4,
        "width": 592,
        "height": 656,
        "content": "## **Workflow Steps**\n1. Fetch & extract syllabus from SEAB site\n2. Load historical exam content\n3. AI analyzes syllabus + trends via OpenRouter model\n4. Parse and format AI output to Markdown/HTML\n5. Auto-publish report to WordPress and Slack\n\n## **Setup Instructions**\n1. Connect HTTP node to SEAB syllabus URL\n2. Configure OpenRouter AI model with API key\n3. Set WordPress and Slack credentials for publishing\n\n## **Prerequisites**\nOpenRouter account, WordPress API access, Slack webhook, SEAB syllabus link.\n\n## **Use Cases**\nPredict 2025 GCE Math topics, generate AI insights, publish summaries for educators.\n\n## **Customization**\nAdapt for other subjects or boards by changing syllabus source and analysis prompt.\n\n## **Benefits**\nEnables fast, data-driven exam forecasting and automated report publication."
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "42c008fc-1542-4479-8605-e8c219b2ec73",
  "connections": {
    "cce94e46-d2a1-4624-8d08-25be02ce4c1f": {
      "main": [
        [
          {
            "node": "a3c4b303-c81c-41b9-b770-2abb1568c22e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "816a5f56-ea2b-49ff-b42b-4661716ee3d5": {
      "main": [
        [
          {
            "node": "b6013e58-fbe9-482c-b7c6-327735bca79d",
            "type": "main",
            "index": 0
          },
          {
            "node": "85229eea-e100-45a1-967e-bad53795037e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a3c4b303-c81c-41b9-b770-2abb1568c22e": {
      "main": [
        [
          {
            "node": "f56cd26a-aedc-42e8-9ecd-c119d892e4db",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8270de30-9c03-4711-a9e9-bae4bf2c9243": {
      "main": [
        [
          {
            "node": "cce94e46-d2a1-4624-8d08-25be02ce4c1f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b9fccdae-a80e-4091-a9ae-0feaab9bac1d": {
      "main": [
        [
          {
            "node": "8270de30-9c03-4711-a9e9-bae4bf2c9243",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f56cd26a-aedc-42e8-9ecd-c119d892e4db": {
      "main": [
        [
          {
            "node": "79d45a5b-7988-47c7-aae9-fc3c64fee16b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed": {
      "main": [
        [
          {
            "node": "3655c347-a6d6-4d5b-a7dc-e1c552ddf75b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "22696c5f-9c7d-489e-a6ef-f3d94b0197a4": {
      "ai_languageModel": [
        [
          {
            "node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "3655c347-a6d6-4d5b-a7dc-e1c552ddf75b": {
      "main": [
        [
          {
            "node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "85229eea-e100-45a1-967e-bad53795037e": {
      "main": [
        [
          {
            "node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b6013e58-fbe9-482c-b7c6-327735bca79d": {
      "main": [
        [
          {
            "node": "5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Fortgeschritten - Dokumentenextraktion, KI-Zusammenfassung

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Fortgeschritten
Anzahl der Nodes14
Kategorie2
Node-Typen11
Schwierigkeitsbeschreibung

Für erfahrene Benutzer, mittelkomplexe Workflows mit 6-15 Nodes

Autor
Cheng Siong Chin

Cheng Siong Chin

@cschin

Dr. Cheng Siong CHIN serves as a Professor in Intelligent Systems Modelling and Simulation in Newcastle University, Singapore. His academic credentials include an M.Sc. in Advanced Control and Systems Engineering from The University of Manchester and a Ph.D. in Robotics from Nanyang Technological University.

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34